1
|
Iflah M, Kassem E, Rubinstein U, Goren S, Ephros M, Cohen D, Muhsen K. Convulsions in children hospitalized for acute gastroenteritis. Sci Rep 2021; 11:15874. [PMID: 34354134 PMCID: PMC8342430 DOI: 10.1038/s41598-021-95202-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/21/2021] [Indexed: 11/09/2022] Open
Abstract
The study aim was to examine possible correlates of convulsions in children hospitalized for acute gastroenteritis (AGE). Data collected in a prospective study of AGE hospitalizations in children aged 0-59 months in 3 hospitals in Israel during 2008-2015 were analyzed. Stool samples were tested for rotavirus using immunochromatography and stool culture was performed for the detection of Salmonella, Shigella and Campylobacter We compared clinical and demographic characteristics of children hospitalized for AGE who had convulsions (n = 68, cases) with children hospitalized for AGE without convulsions (n = 3505, controls). Age differed between children with and without convulsions (p = 0.005); the former were mostly toddlers aged 12-23 months (51%) compared to 30% of the control group. A higher percentage of cases tested positive for Shigella (11% vs. 4%, p = 0.002), the opposite was found for rotavirus (2% vs. 30% p < 0.001). A multivariable model showed that body temperature (OR 2.91 [95% CI 1.78-4.76], p < 0.001) and high blood glucose level (> 120 mg/dL) (OR 5.71 [95% CI 1.27-25.58] p = 0.023) were positively related to convulsions in children with AGE, while severe AGE (Vesikari score ≥ 11) was inversely related with convulsions (OR 0.09 [95% CI 0.03-0.24], p < 0.001). Conclusion: Elevated body temperature is associated with convulsions in children with AGE, but not severity of AGE, while hyperglycemia might reflect a neuroendocrine stress reaction to convulsions, AGE or both.
Collapse
Affiliation(s)
- Moti Iflah
- School of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eias Kassem
- Department of Pediatrics, Hillel Yaffe Medical Center, Hadera, Israel
| | - Uri Rubinstein
- Department of Pediatrics, Laniado Medical Center, Netanya, Israel
| | - Sophy Goren
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 6139001, Tel Aviv, Israel
| | - Moshe Ephros
- Department of Pediatrics, Carmel Medical Center, Haifa, Israel.,Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dani Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 6139001, Tel Aviv, Israel
| | - Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 6139001, Tel Aviv, Israel.
| |
Collapse
|
2
|
Haksar D, Asadpoor M, Heise T, Shi J, Braber S, Folkerts G, Ballell L, Rodrigues J, Pieters RJ. Fighting Shigella by Blocking Its Disease-Causing Toxin. J Med Chem 2021; 64:6059-6069. [PMID: 33909975 PMCID: PMC8154557 DOI: 10.1021/acs.jmedchem.1c00152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Shiga toxin is an
AB5 toxin produced by Shigella species, while related toxins are produced
by Shiga toxin-producing Escherichia coli (STEC). Infection by Shigella can lead to bloody diarrhea followed
by the often fatal hemolytic uremic syndrome (HUS). In the present
paper, we aimed for a simple and effective toxin inhibitor by comparing
three classes of carbohydrate-based inhibitors: glycodendrimers, glycopolymers,
and oligosaccharides. We observed a clear enhancement in potency for
multivalent inhibitors, with the divalent and tetravalent compounds
inhibiting in the millimolar and micromolar range, respectively. However,
the polymeric inhibitor based on galabiose was the most potent in
the series exhibiting nanomolar inhibition. Alginate and chitosan
oligosaccharides also inhibit Shiga toxin and may be used as a prophylactic
drug during shigella outbreaks.
Collapse
Affiliation(s)
- Diksha Haksar
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Torben Heise
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jie Shi
- Diseases of the Developing World (DDW), Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760 Madrid, Spain
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Lluis Ballell
- Diseases of the Developing World (DDW), Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760 Madrid, Spain
| | - Janneth Rodrigues
- Diseases of the Developing World (DDW), Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760 Madrid, Spain
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
3
|
Sváb D, Falgenhauer L, Horváth B, Maróti G, Falgenhauer J, Chakraborty T, Tóth I. Genome Analysis of a Historical Shigella dysenteriae Serotype 1 Strain Carrying a Conserved Stx Prophage Region. Front Microbiol 2021; 11:614793. [PMID: 33488558 PMCID: PMC7819885 DOI: 10.3389/fmicb.2020.614793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Shigella dysenteriae are significant agents of bacillary dysentery, accounting for a considerable number of illnesses with high morbidity worldwide. The Shiga toxin (Stx) encoded by a defective prophage is the key virulence factor of S. dysenteriae type 1 (SD1) strains. Here we present the full genome sequence of an SD1 strain HNCMB 20080 isolated in 1954, compare it to other sequenced SD1 genomes, and assess the diversity of Stx-prophages harbored by previously sequenced SD1 strains. The genome of HNCMB 20080 consists of a chromosome sized 4,393,622 bp containing 5,183 CDSs, as well as two small plasmids. Comparative genomic analysis revealed a high degree of uniformity among SD1 genomes, including the structure of Stx prophage regions, which we found to form two subgroups termed PT-I and PT-II. All PT-I strains are members of the sequence type (ST) 146 or ST260, while the only PT-II harboring strain, Sd1617 proved to be ST untypeable. In accordance with data from previous reports, the Stx1 prophage could not be induced from HNCMB 20080. Our cumulative data do not support the notion that stx-harboring phages in STEC are derived from historical SD1 isolates.
Collapse
Affiliation(s)
- Domonkos Sváb
- Institue for Veterinary Medical Research, Centre for Agricultural Research, Martonvásár, Hungary
| | - Linda Falgenhauer
- Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany.,German Centre for Infection Research, Site Giessen-Marburg-Langen, Giessen, Germany
| | | | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.,Faculty of Water Sciences, University of Public Service, Baja, Hungary
| | - Jane Falgenhauer
- German Centre for Infection Research, Site Giessen-Marburg-Langen, Giessen, Germany.,Institute for Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany.,Institute for Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - István Tóth
- Institue for Veterinary Medical Research, Centre for Agricultural Research, Martonvásár, Hungary
| |
Collapse
|
4
|
Shad AA, Shad WA. Shigella sonnei: virulence and antibiotic resistance. Arch Microbiol 2021; 203:45-58. [PMID: 32929595 PMCID: PMC7489455 DOI: 10.1007/s00203-020-02034-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
Shigella sonnei is the emerging pathogen globally, as it is the second common infectious species of shigellosis (bloody diarrhoea) in low- and middle-income countries (LMICs) and the leading one in developed world. The multifactorial processes and novel mechanisms have been identified in S. sonnei, that are collectively playing apart a substantial role in increasing its prevalence, while replacing the S. flexneri and other Gram-negative gut pathogens niche occupancy. Recently, studies suggest that due to improvement in sanitation S. sonnei has reduced cross-immunization from Plesiomonas shigelliodes (having same O-antigen as S. sonnei) and also found to outcompete the two major species of Enterobacteriaceae family (Shigella flexneri and Escherichia coli), due to encoding of type VI secretion system (T6SS). This review aimed to highlight S. sonnei as an emerging pathogen in the light of recent research with pondering aspects on its epidemiology, transmission, and pathogenic mechanisms. Additionally, this paper aimed to review S. sonnei disease pattern and related complications, symptoms, and laboratory diagnostic techniques. Furthermore, the available treatment reigns and antibiotic-resistance patterns of S. sonnei are also discussed, as the ciprofloxacin and fluoroquinolone-resistant S. sonnei has already intensified the global spread and burden of antimicrobial resistance. In last, prevention and controlling strategies are briefed to limit and tackle S. sonnei and possible future areas are also explored that needed more research to unravel the hidden mysteries surrounding S. sonnei.
Collapse
Affiliation(s)
- Ahtesham Ahmad Shad
- Institute of Microbiology, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Wajahat Ahmed Shad
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
5
|
Hassan R, Tantawy M, Gouda NA, Elzayat MG, Gabra S, Nabih A, Diab AA, El-Hadidi M, Bakry U, Shoeb MR, Elanany M, Shalaby L, Sayed AA. Genotypic characterization of multiple drug resistant Escherichia coli isolates from a pediatric cancer hospital in Egypt. Sci Rep 2020; 10:4165. [PMID: 32139767 PMCID: PMC7057982 DOI: 10.1038/s41598-020-61159-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/20/2020] [Indexed: 11/08/2022] Open
Abstract
Infection with multiple drug resistant (MDR) Escherichia coli poses a life threat to immunocompromised pediatric cancer patients. Our aim is to genotypically characterize the plasmids harbored in MDR E. coli isolates recovered from bacteremic patients of Children's Cancer Hospital in Egypt 57357 (CCHE 57357). In this study, 21 carbapenem-resistant E. coli (CRE) isolates were selected that exhibit Quinolones and Aminoglycosides resistance. Plasmid shot-gun sequencing was performed using Illumina next- generation sequencing platform. Isolates demonstrated resistant to all beta-lactams, carbapenems, aminoglycosides and quinolones. Of the 32 antimicrobial resistant genes identified that exceeded the analysis cutoff coverage, the highest represented genes were aph(6)-Id, sul2, aph(3″)-Ib, aph(3')-Ia, sul1, dfrA12, TEM-220, NDM-11. Isolates employed a wide array of resistance mechanisms including antibiotic efflux, antibiotic inactivation, antibiotic target replacements and antibiotic target alteration. Sequenced isolates displayed diverse insertion sequences, including IS26, suggesting dynamic reshuffling of the harbored plasmids. Most isolates carried plasmids originating from other bacterial species suggesting a possible horizontal gene transfer. Only two isolates showed virulence factors with iroA gene cluster which was found in only one of them. Outside the realms of nosocomial infections among patients in hospitals, our results indicate a transfer of resistant genes and plasmids across different organisms.
Collapse
Affiliation(s)
- Reem Hassan
- Molecular Microbiology Unit, Children's cancer hospital Egypt 57357, Cairo, Egypt
- Department of clinical pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa Tantawy
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Nouran A Gouda
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Mariam G Elzayat
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Sara Gabra
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Amena Nabih
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Aya A Diab
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Mohamed El-Hadidi
- Bioinformatics Group, Center of Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Usama Bakry
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Mohamed R Shoeb
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Mervat Elanany
- Department of clinical pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Microbiology Unit, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Lobna Shalaby
- Infectious disease unit, Children's cancer hospital Egypt 57357, Cairo, Egypt
- Department of pediatric oncology, National cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed A Sayed
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt.
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
6
|
Sváb D, Horváth B, Rohde M, Maróti G, Tóth I. R18C is a new viable P2-like bacteriophage of rabbit origin infecting Citrobacter rodentium and Shigella sonnei strains. Arch Virol 2019; 164:3157-3160. [PMID: 31641840 PMCID: PMC6823313 DOI: 10.1007/s00705-019-04424-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022]
Abstract
Here, we report a novel virulent P2-like bacteriophage, R18C, isolated from rabbit faeces, which, in addition to Escherichia coli K-12 strains, was able to be propagated on Citrobacter rodentium strain ICC169 and a range of Shigella sonnei strains with high efficiency of plating (EOP). It represents the first lytic bacteriophage originating from rabbit and the first infectious P2-like phage of animal origin. In the three characteristic moron-containing regions of P2-like phages, R18C contains genes with unknown function that have so far only been found in cryptic P2-like prophages.
Collapse
Affiliation(s)
- Domonkos Sváb
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Brunswick, Germany
| | - Gergely Maróti
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - István Tóth
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
7
|
|
8
|
In Silico Serotyping Based on Whole-Genome Sequencing Improves the Accuracy of Shigella Identification. Appl Environ Microbiol 2019; 85:AEM.00165-19. [PMID: 30709819 DOI: 10.1128/aem.00165-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/21/2022] Open
Abstract
Bacteria of the genus Shigella, consisting of 4 species and >50 serotypes, cause shigellosis, a foodborne disease of significant morbidity, mortality, and economic loss worldwide. Classical Shigella identification based on selective media and serology is tedious, time-consuming, expensive, and not always accurate. A molecular diagnostic assay does not distinguish Shigella at the species level or from enteroinvasive Escherichia coli (EIEC). We inspected genomic sequences from 221 Shigella isolates and observed low concordance rates between conventional designation and molecular serotyping: 86.4% and 80.5% at the species and serotype levels, respectively. Serotype determinants for 6 additional serotypes were identified. Examination of differentiation gene markers commonly perceived as characteristic hallmarks in Shigella showed high variability among different serotypes. Using this information, we developed ShigaTyper, an automated workflow that utilizes limited computational resources to accurately and rapidly determine 59 Shigella serotypes using Illumina paired-end whole-genome sequencing (WGS) reads. Shigella serotype determinants and species-specific diagnostic markers were first identified through read alignment to an in-house curated reference sequence database. Relying on sequence hits that passed a threshold level of coverage and accuracy, serotype could be unambiguously predicted within 1 min for an average-size WGS sample of ∼500 MB. Validation with WGS data from 380 isolates showed an accuracy rate of 98.2%. This pipeline is the first step toward building a comprehensive WGS-based analysis pipeline of Shigella spp. in a field laboratory setting, where speed is essential and resources need to be more cost-effectively dedicated.IMPORTANCE Shigella causes diarrheal disease with serious public health implications. However, conventional Shigella identification methods are laborious and time-consuming and can be erroneous due to the high similarity between Shigella and enteroinvasive Escherichia coli (EIEC) and cross-reactivity between serotyping antisera. Further, serotype interpretation is complicated for inexperienced users. To develop an easier method with higher accuracy based on whole-genome sequencing (WGS) for Shigella serotyping, we systematically examined genomic information of Shigella isolates from 53 serotypes to define rules for differentiation and serotyping. We created ShigaTyper, an automated pipeline that accurately and rapidly excludes non-Shigella isolates and identifies 59 Shigella serotypes using Illumina paired-end WGS reads. A serotype can be unambiguously predicted at a data processing speed of 538 MB/min with 98.2% accuracy from a regular laptop. Once it is installed, training in bioinformatics analysis and Shigella genetics is not required. This pipeline is particularly useful to general microbiologists in field laboratories.
Collapse
|
9
|
Luzzaro F, Clément M, Principe L, Viaggi V, Bernasconi OJ, Endimiani A. Characterisation of the first extended-spectrum β-lactamase (ESBL)-producing Shigella sonnei clinical isolate in Italy. J Glob Antimicrob Resist 2019; 17:58-59. [PMID: 30877056 DOI: 10.1016/j.jgar.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/01/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- Francesco Luzzaro
- Clinical Microbiology and Virology Unit, A. Manzoni Hospital, Lecco, Italy
| | - Mathieu Clément
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Luigi Principe
- Clinical Microbiology and Virology Unit, A. Manzoni Hospital, Lecco, Italy
| | - Valentina Viaggi
- Clinical Microbiology and Virology Unit, A. Manzoni Hospital, Lecco, Italy
| | - Odette J Bernasconi
- Institute for Infectious Diseases (IFIK), University of Bern, Friedbühlstrasse 51, CH-3001 Bern, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases (IFIK), University of Bern, Friedbühlstrasse 51, CH-3001 Bern, Switzerland.
| |
Collapse
|
10
|
Sváb D, Falgenhauer L, Rohde M, Chakraborty T, Tóth I. Complete genome sequence of C130_2, a novel myovirus infecting pathogenic Escherichia coli and Shigella strains. Arch Virol 2018; 164:321-324. [PMID: 30238162 DOI: 10.1007/s00705-018-4042-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022]
Abstract
The genome sequence of a novel virulent bacteriophage, named " C130_2", that is morphologically a member of the family Myoviridae is reported. The 41,775-base-pair double-stranded DNA genome of C130_2 contains 59 ORFs but exhibits overall low sequence similarity to bacteriophage genomes for which sequences are publicly available. Phylogenetic analysis indicated that C130_2 represents a new phage type. C130_2 could be propagated well on enterohemorrhagic Escherichia coli (EHEC) O157:H7 and other pathogenic E. coli strains, as well as on strains of various Shigella species.
Collapse
Affiliation(s)
- Domonkos Sváb
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Linda Falgenhauer
- Institute of Medical Microbiology, Justus Liebig University Giessen and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Braunschweig, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - István Tóth
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
11
|
Allué-Guardia A, Koenig SSK, Quirós P, Muniesa M, Bono JL, Eppinger M. Closed Genome and Comparative Phylogenetic Analysis of the Clinical Multidrug Resistant Shigella sonnei Strain 866. Genome Biol Evol 2018; 10:2241-2247. [PMID: 30060169 PMCID: PMC6128377 DOI: 10.1093/gbe/evy168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 01/10/2023] Open
Abstract
Shigella sonnei is responsible for the majority of shigellosis infections in the US with over 500,000 cases reported annually. Here, we present the complete genome of the clinical multidrug resistant (MDR) strain 866, which is highly susceptible to bacteriophage infections. The strain has a circular chromosome of 4.85 Mb and carries a 113 kb MDR plasmid. This IncB/O/K/Z-type plasmid, termed p866, confers resistance to five different classes of antibiotics including ß-lactamase, sulfonamide, tetracycline, aminoglycoside, and trimethoprim. Comparative analysis of the plasmid architecture and gene inventory revealed that p866 shares its plasmid backbone with previously described IncB/O/K/Z-type Shigella spp. and Escherichia coli plasmids, but is differentiated by the insertion of antibiotic resistance cassettes, which we found associated with mobile genetic elements such as Tn3, Tn7, and Tn10. A whole genome-derived phylogenetic reconstruction showed the evolutionary relationships of S. sonnei strain 866 and the four established Shigella species, highlighting the clonal nature of S. sonnei.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Department of Biology, University of Texas at San Antonio.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio
| | - Sara S K Koenig
- Department of Biology, University of Texas at San Antonio.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio
| | - Pablo Quirós
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain
| | - James L Bono
- Agricultural Research Service, United States Department of Agriculture, U.S. Meat Animal Research Center, Clay Center, Nebraska
| | - Mark Eppinger
- Department of Biology, University of Texas at San Antonio.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio
| |
Collapse
|
12
|
Rahman M, Nabi A, Asadulghani M, Faruque SM, Islam MA. Toxigenic properties and stx phage characterization of Escherichia coli O157 isolated from animal sources in a developing country setting. BMC Microbiol 2018; 18:98. [PMID: 30170562 PMCID: PMC6119239 DOI: 10.1186/s12866-018-1235-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
Background In many Asian countries including Bangladesh E. coli O157 are prevalent in animal reservoirs and in the food chain, but the incidence of human infection due to E. coli O157 is rare. One of the reasons could be inability of the organism from animal origin to produce sufficient amount of Shiga toxin (Stx), which is the main virulence factor associated with the severe sequelae of infection. This study aimed to fill out this knowledge gap by investigating the toxigenic properties and characteristics of stx phage of E. coli O157 isolated from animal sources in Bangladesh. Results We analysed 47 stx2 positive E. coli O157 of food/animal origin for stx2 gene variants, Shiga toxin production, presence of other virulence genes, stx phage insertion sites, presence of genes associated with functionality of stx phages (Q933 and Q21) and stx2 upstream region. Of the 47 isolates, 46 were positive for both stx2a and stx2d while the remaining isolate was positive for stx2d only. Reverse Passive Latex Agglutination assay (RPLA) showed that 42/47 isolates produced little or no toxin, while 5 isolates produced a high titre of toxin (64 to 128). 39/47 isolates were positive for the Toxin Non-Producing (TNP) specific regions in the stx2 promoter. Additionally, all isolates were negative for antiterminator Q933while a majority of isolates were positive for Q21 gene suggesting the presence of defective stx phage. Of the yehV and wrbA phage insertion sites, yehV was found occupied in 11 isolates while wrbA site was intact in all the isolates. None of the isolates was positive for the virulence gene, cdt but all were positive for hlyA, katP, etpD and eae genes. Isolates that produced high titre Stx (n = 5) produced complete phage particles capable of infecting multiple bacterial hosts. One of these phages was shown to produce stable lysogens in host strains rendering the Stx2 producing ability. Conclusion Despite low frequency in the tested isolates, E. coli O157 isolates in Bangladesh carry inducible stx phages and have the capacity to produce Stx2, indicating a potential risk of E. coli O157 infection in humans.
Collapse
Affiliation(s)
- Mahdia Rahman
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh
| | - Ashikun Nabi
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh.,Present Address: Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Md Asadulghani
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh
| | - Shah M Faruque
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh.,Present Address: Department of Mathematics and Natural Sciences, BRAC University, Mohakhali, Dhaka, 1212, Bangladesh
| | - Mohammad Aminul Islam
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|