1
|
de Souza G, Teixeira SC, Fajardo Martínez AF, Silva RJ, Luz LC, de Lima Júnior JP, Rosini AM, dos Santos NCL, de Oliveira RM, Paschoalino M, Barbosa MC, Alves RN, Gomes AO, da Silva CV, Ferro EAV, Barbosa BF. Trypanosoma cruzi P21 recombinant protein modulates Toxoplasma gondii infection in different experimental models of the human maternal-fetal interface. Front Immunol 2023; 14:1243480. [PMID: 37915581 PMCID: PMC10617204 DOI: 10.3389/fimmu.2023.1243480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Toxoplasma gondii is the etiologic agent of toxoplasmosis, a disease that affects about one-third of the human population. Most infected individuals are asymptomatic, but severe cases can occur such as in congenital transmission, which can be aggravated in individuals infected with other pathogens, such as HIV-positive pregnant women. However, it is unknown whether infection by other pathogens, such as Trypanosoma cruzi, the etiologic agent of Chagas disease, as well as one of its proteins, P21, could aggravate T. gondii infection. Methods In this sense, we aimed to investigate the impact of T. cruzi and recombinant P21 (rP21) on T. gondii infection in BeWo cells and human placental explants. Results Our results showed that T. cruzi infection, as well as rP21, increases invasion and decreases intracellular proliferation of T. gondii in BeWo cells. The increase in invasion promoted by rP21 is dependent on its binding to CXCR4 and the actin cytoskeleton polymerization, while the decrease in proliferation is due to an arrest in the S/M phase in the parasite cell cycle, as well as interleukin (IL)-6 upregulation and IL-8 downmodulation. On the other hand, in human placental villi, rP21 can either increase or decrease T. gondii proliferation, whereas T. cruzi infection increases T. gondii proliferation. This increase can be explained by the induction of an anti-inflammatory environment through an increase in IL-4 and a decrease in IL-6, IL-8, macrophage migration inhibitory factor (MIF), and tumor necrosis factor (TNF)-α production. Discussion In conclusion, in situations of coinfection, the presence of T. cruzi may favor the congenital transmission of T. gondii, highlighting the importance of neonatal screening for both diseases, as well as the importance of studies with P21 as a future therapeutic target for the treatment of Chagas disease, since it can also favor T. gondii infection.
Collapse
Affiliation(s)
- Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Aryani Felixa Fajardo Martínez
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rafaela José Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Luana Carvalho Luz
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Joed Pires de Lima Júnior
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Natália Carine Lima dos Santos
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rafael Martins de Oliveira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marina Paschoalino
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Matheus Carvalho Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rosiane Nascimento Alves
- Department of Agricultural and Natural Science, Universidade do Estado de Minas Gerais, Ituiutaba, MG, Brazil
| | - Angelica Oliveira Gomes
- Institute of Natural and Biological Sciences, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Claudio Vieira da Silva
- Laboratory of Trypanosomatids, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
2
|
Lannes-Vieira J, Vilar-Pereira G, Barrios LC, Silva AA. Anxiety, depression, and memory loss in Chagas disease: a puzzle far beyond neuroinflammation to be unpicked and solved. Mem Inst Oswaldo Cruz 2023; 118:e220287. [PMID: 37018799 PMCID: PMC10072003 DOI: 10.1590/0074-02760220287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 04/07/2023] Open
Abstract
Mental disorders such as anxiety, depression, and memory loss have been described in patients with chronic Chagas disease (CD), a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Social, psychological, and biological stressors may take part in these processes. There is a consensus on the recognition of an acute nervous form of CD. In chronic CD patients, a neurological form is associated with immunosuppression and neurobehavioural changes as sequelae of stroke. The chronic nervous form of CD has been refuted, based on the absence of histopathological lesions and neuroinflammation; however, computed tomography shows brain atrophy. Overall, in preclinical models of chronic T. cruzi infection in the absence of neuroinflammation, behavioural disorders such as anxiety and depression, and memory loss are related to brain atrophy, parasite persistence, oxidative stress, and cytokine production in the central nervous system. Interferon-gamma (IFNγ)-bearing microglial cells are colocalised with astrocytes carrying T. cruzi amastigote forms. In vitro studies suggest that IFNγ fuels astrocyte infection by T. cruzi and implicate IFNγ-stimulated infected astrocytes as sources of TNF and nitric oxide, which may also contribute to parasite persistence in the brain tissue and promote behavioural and neurocognitive changes. Preclinical trials in chronically infected mice targeting the TNF pathway or the parasite opened paths for therapeutic approaches with a beneficial impact on depression and memory loss. Despite the path taken, replicating aspects of the chronic CD and testing therapeutic schemes in preclinical models, these findings may get lost in translation as the chronic nervous form of CD does not fulfil biomedical model requirements, as the presence of neuroinflammation, to be recognised. It is hoped that brain atrophy and behavioural and neurocognitive changes are sufficient traits to bring the attention of researchers to study the biological and molecular basis of the central nervous system commitment in chronic CD.
Collapse
Affiliation(s)
- Joseli Lannes-Vieira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia das Interações, Rio de Janeiro, RJ, Brasil
| | - Glaucia Vilar-Pereira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia das Interações, Rio de Janeiro, RJ, Brasil
| | - Leda Castaño Barrios
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia das Interações, Rio de Janeiro, RJ, Brasil
| | - Andrea Alice Silva
- Universidade Federal Fluminense, Faculdade de Medicina, Departamento de Patologia, Laboratório Multidisciplinar de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Niterói, RJ, Brasil
| |
Collapse
|
3
|
Shikanai-Yasuda MA, Mediano MFF, Novaes CTG, de Sousa AS, Sartori AMC, Santana RC, Correia D, de Castro CN, Severo MMDS, Hasslocher-Moreno AM, Fernandez ML, Salvador F, Pinazo MJ, Bolella VR, Furtado PC, Corti M, Neves Pinto AY, Fica A, Molina I, Gascon J, Viñas PA, Cortez-Escalante J, Ramos AN, de Almeida EA. Clinical profile and mortality in patients with T. cruzi/HIV co-infection from the multicenter data base of the "Network for healthcare and study of Trypanosoma cruzi/HIV co-infection and other immunosuppression conditions". PLoS Negl Trop Dis 2021; 15:e0009809. [PMID: 34591866 PMCID: PMC8483313 DOI: 10.1371/journal.pntd.0009809] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/10/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Chagas disease (CD) globalization facilitated the co-infection with Human Immunodeficiency Virus (HIV) in endemic and non-endemic areas. Considering the underestimation of Trypanosoma cruzi (T. cruzi)-HIV co-infection and the risk of life-threatening Chagas Disease Reactivation (CDR), this study aimed to analyze the major co-infection clinical characteristics and its mortality rates. METHODS This is a cross-sectional retrospective multicenter study of patients with CD confirmed by two serological or one parasitological tests, and HIV infection confirmed by immunoblot. CDR was diagnosed by direct microscopy with detection of trypomastigote forms in the blood or other biological fluids and/or amastigote forms in inflammatory lesions. RESULTS Out of 241 patients with co-infection, 86.7% were from Brazil, 47.5% had <200 CD4+ T cells/μL and median viral load was 17,000 copies/μL. Sixty CDR cases were observed. Death was more frequent in patients with reactivation and was mainly caused by CDR. Other causes of death unrelated to CDR were the manifestation of opportunistic infections in those with Acquired Immunodeficiency Syndrome. The time between the co-infection diagnosis to death was shorter in patients with CDR. Lower CD4+ cells count at co-infection diagnosis was independently associated with reactivation. Similarly, lower CD4+ cells numbers at co-infection diagnosis and male sex were associated with higher lethality in CDR. Additionally, CD4+ cells were lower in meningoencephalitis than in myocarditis and milder forms. CONCLUSION This study showed major features on T. cruzi-HIV co-infection and highlighted the prognostic role of CD4+ cells for reactivation and mortality. Since lethality was high in meningoencephalitis and all untreated patients died shortly after the diagnosis, early diagnosis, immediate antiparasitic treatment, patient follow-up and epidemiological surveillance are essentials in T. cruzi/HIV co-infection and CDR managements.
Collapse
Affiliation(s)
- Maria Aparecida Shikanai-Yasuda
- Departament of Infectious and Parasitic, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
- Laboratory of Immunology, Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
- WHO Technical Group IVb on prevention, control and management of non congenital infections of the Global Network for Chagas Disease Elimination, WHO, Geneva, Switzerland
- * E-mail: ,
| | - Mauro Felippe Felix Mediano
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Health Ministry, Rio de Janeiro, Brazil
| | | | - Andréa Silvestre de Sousa
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Health Ministry, Rio de Janeiro, Brazil
| | - Ana Marli Christovam Sartori
- Division of Infectious Diseases, Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Carvalho Santana
- Division of Infectious Diseases, Department of Internal Medicine, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - Dalmo Correia
- Discipline of Infectious and Parasitic Diseases, Department of Internal Medicine, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | | | | | - Marisa Liliana Fernandez
- Hospital de Infecciosas, Buenos Aires, Argentina
- National Institute of Parasitology, Departament of Clinics, Pathology and Treatment, Health Ministry, Buenos Aires, Argentina
| | - Fernando Salvador
- Department of Infectious Diseases, Vall d’Hebron University Hospital, PROSICS, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Valdes Roberto Bolella
- Division of Infectious Diseases, Department of Internal Medicine, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - Pedro Carvalho Furtado
- Discipline of Infectious and Parasitic Diseases, Department of Internal Medicine, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Marcelo Corti
- Hospital de Infecciosas, Buenos Aires, Argentina
- Departamento de Medicina, Asignatura Enfermedades Infecciosas, Facultad de Medicina, Universidad Buenos Aires, Buenos Aires, Argentina
| | - Ana Yecê Neves Pinto
- Evandro Chagas Institute, Health Surveillance Secretary, Health Ministry, Belém, Brazil
| | - Alberto Fica
- Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Israel Molina
- Department of Infectious Diseases, Vall d’Hebron University Hospital, PROSICS, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquim Gascon
- ISGlobal, Universitat de Barcelona, Hospital Clínic, Barcelona, Spain
| | - Pedro Albajar Viñas
- WHO Technical Group IVb on prevention, control and management of non congenital infections of the Global Network for Chagas Disease Elimination, WHO, Geneva, Switzerland
- Department of Control of Neglected Tropical Diseases, World Health Organization, WHO, Geneva, Switzerland
| | - Juan Cortez-Escalante
- Pan American Health Organization (PAHO), World Health Organization (WHO), Brasília, Brazil
| | - Alberto Novaes Ramos
- Department of Community Health, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Eros Antonio de Almeida
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| |
Collapse
|
4
|
Urquiza J, Cevallos C, Elizalde MM, Delpino MV, Quarleri J. Priming Astrocytes With HIV-Induced Reactive Oxygen Species Enhances Their Trypanosoma cruzi Infection. Front Microbiol 2020; 11:563320. [PMID: 33193149 PMCID: PMC7604310 DOI: 10.3389/fmicb.2020.563320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/22/2020] [Indexed: 01/18/2023] Open
Abstract
Introduction: Trypanosoma cruzi is an intracellular protozoa and etiological agent that causes Chagas disease. Its presence among the immunocompromised HIV-infected individuals is relevant worldwide because of its impact on the central nervous system (CNS) causing severe meningoencephalitis. The HIV infection of astrocytes – the most abundant cells in the brain, where the parasite can also be hosted – being able to modify reactive oxygen species (ROS) could influence the parasite growth. In such interaction, extracellular vesicles (EVs) shed from trypomastigotes may alter the surrounding environment including its pro-oxidant status. Methods: We evaluated the interplay between both pathogens in human astrocytes and its consequences on the host cell pro-oxidant condition self-propitiated by the parasite – using its EVs – or by HIV infection. For this goal, we challenged cultured human primary astrocytes with both pathogens and the efficiency of infection and multiplication were measured by microscopy and flow cytometry and parasite DNA quantification. Mitochondrial and cellular ROS levels were measured by flow cytometry in the presence or not of scavengers with a concomitant evaluation of the cellular apoptosis level. Results: We observed that increased mitochondrial and cellular ROS production boosted significantly T. cruzi infection and multiplication in astrocytes. Such oxidative condition was promoted by free trypomastigotes-derived EVs as well as by HIV infection. Conclusions: The pathogenesis of the HIV-T. cruzi coinfection in astrocytes leads to an oxidative misbalance as a key mechanism, which exacerbates ROS generation and promotes positive feedback to parasite growth in the CNS.
Collapse
Affiliation(s)
- Javier Urquiza
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cintia Cevallos
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Mercedes Elizalde
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M Victoria Delpino
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Ojeda DS, Grasso D, Urquiza J, Till A, Vaccaro MI, Quarleri J. Cell Death Is Counteracted by Mitophagy in HIV-Productively Infected Astrocytes but Is Promoted by Inflammasome Activation Among Non-productively Infected Cells. Front Immunol 2018; 9:2633. [PMID: 30515154 PMCID: PMC6255949 DOI: 10.3389/fimmu.2018.02633] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/25/2018] [Indexed: 01/18/2023] Open
Abstract
Despite more than 30 years of extensive research efforts, a complete understanding of the neurological consequences of HIV central nervous system (CNS) infection remains elusive. HIV is not only able to establish a viral reservoir in the CNS but also to initiate manifestation of neurodegenerative diseases. These neurological disorders may arise because of virus-induced activation of the inflammasome in CNS cells, including astrocytes. Nevertheless, in some productive viral infection scenarios, selective autophagy may reduce inflammation through mitochondrial degradation ("mitophagy") to counteract inflammasome activation. In this study, using cultured human astrocytes, we demonstrate that-depending on the HIV infection outcome-cells may resist death, or succumb by inflammasome activation when viral infection is productive or abortive, respectively. Cells productively infected with HIV were able to attenuate both mitochondrial ROS production and mitochondrial membrane potential dissipation, thus exhibiting cell death resistance. Interestingly, mitochondrial injury was counteracted by increasing the autophagic flux and by activating mitophagy. Conversely, astrocytes exposed to HIV in an abortive scenario showed prominent mitochondrial damage, inflammasome activation, and cell death. This bystander effect occurred after cell-to-cell contact with HIV-productively infected astrocytes. In summary, we demonstrate a tight functional crosstalk between viral infection mode, inflammasome activation, autophagy pathways and cell fate in the context of HIV infection. Moreover, mitophagy is crucial for cell death resistance in HIV-productively infected astrocytes, but its impairment may favor inflammasome-mediated cell death in abortively infected cells.
Collapse
Affiliation(s)
- Diego S Ojeda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Grasso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular Departamento de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Urquiza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andreas Till
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany.,Life and Brain GmbH, Bonn, Germany
| | - María Inés Vaccaro
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular Departamento de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Quarleri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|