1
|
Cutugno L, O'Byrne C, Pané‐Farré J, Boyd A. Rifampicin-resistant RpoB S522L Vibrio vulnificus exhibits disturbed stress response and hypervirulence traits. Microbiologyopen 2023; 12:e1379. [PMID: 37877661 PMCID: PMC10493491 DOI: 10.1002/mbo3.1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 10/26/2023] Open
Abstract
Rifampicin resistance, which is genetically linked to mutations in the RNA polymerase β-subunit gene rpoB, has a global impact on bacterial transcription and cell physiology. Previously, we identified a substitution of serine 522 in RpoB (i.e., RpoBS522L ) conferring rifampicin resistance to Vibrio vulnificus, a human food-borne and wound-infecting pathogen associated with a high mortality rate. Transcriptional and physiological analysis of V. vulnificus expressing RpoBS522L showed increased basal transcription of stress-related genes and global virulence regulators. Phenotypically these transcriptional changes manifest as disturbed osmo-stress responses and toxin-associated hypervirulence as shown by reduced hypoosmotic-stress resistance and enhanced cytotoxicity of the RpoBS522L strain. These results suggest that RpoB-linked rifampicin resistance has a significant impact on V. vulnificus survival in the environment and during infection.
Collapse
Affiliation(s)
- Laura Cutugno
- School of Natural SciencesUniversity of GalwayGalwayIreland
| | - Conor O'Byrne
- School of Biological and Chemical SciencesUniversity of GalwayGalwayIreland
| | - Jan Pané‐Farré
- Centre for Synthetic Microbiology (SYNMIKRO) & Department of ChemistryPhilipps‐University MarburgMarburgGermany
| | - Aoife Boyd
- School of Natural SciencesUniversity of GalwayGalwayIreland
| |
Collapse
|
2
|
Wann SR, Lo HR, Chang YT, Liao JB, Wen ZH, Chi PL. P2X7 receptor blockade reduces pyroptotic inflammation and promotes phagocytosis in Vibrio vulnificus infection. J Cell Physiol 2023; 238:2316-2334. [PMID: 37724600 DOI: 10.1002/jcp.31114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 09/21/2023]
Abstract
Vibrio vulnificus, a gram-negative bacterium, causes serious wound infections and septicemia. Once it develops into early phase sepsis, hyperinflammatory immune responses result in poor prognosis in patients. The present study aimed to examine the possible underlying pathogenic mechanism and explore potential agents that could protect against V. vulnificus cytotoxicity. Here, we report that infection of mouse macrophages with V. vulnificus triggers antiphagocytic effects and pyroptotic inflammation via ATP-mediated purinergic P2X7 receptor (P2X7R) signaling. V. vulnificus promoted P2X7-dependent nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 translocation, modulating the expression of the inflammasome sensor NLR family pyrin domain containing 3 (NLRP3), adaptor apoptosis-associated speck-like protein containing a card (ASC), and pyroptotic protein gasdermin D (GSDMD) in mouse macrophages. V. vulnificus induced the NLRP3/caspase-1 inflammasome signaling complex expression that drives GSDMD transmembrane pore formation and secretion of interleukin (IL)-1β, IL-18, and macrophage inflammatory protein-2 (MIP-2). This effect was blocked by P2X7R antagonists, indicating that the P2X7R mediates GSDMD-related pyroptotic inflammation in macrophages through the NF-κB/NLRP3/caspase-1 signaling pathway. Furthermore, blockade of P2X7R reduced V. vulnificus-colony-forming units in the spleen, immune cell infiltration into the skin and lung tissues, and serum concentrations of IL-1β, IL-18, and MIP-2 in mice. These results indicate that P2X7R plays a vital role in mediating phagocytosis by macrophages and pyroptotic inflammation during V. vulnificus infection and provides new opportunities for therapeutic intervention in bacterial infections.
Collapse
Affiliation(s)
- Shue-Ren Wann
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- Department of Medicine, Pingtung Veterans General Hospital, Pingtung City, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Horng-Ren Lo
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung City, Taiwan
| | - Yun-Te Chang
- Department of Emergency & Critical Care Medicine, Pingtung Veterans General Hospital, Pingtung City, Taiwan
| | - Jia-Bin Liao
- Department of Pathology and Laboratory, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
3
|
Lu K, Li Y, Chen R, Yang H, Wang Y, Xiong W, Xu F, Yuan Q, Liang H, Xiao X, Huang R, Chen Z, Tian C, Wang S. Pathogenic mechanism of Vibrio vulnificus infection. Future Microbiol 2023; 18:373-383. [PMID: 37158065 DOI: 10.2217/fmb-2022-0243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Vibrio vulnificus is a fatal, opportunistic human pathogen transmitted through the consumption of raw/undercooked seafood or direct contact. V. vulnificus infection progresses rapidly and has severe consequences; some cases may require amputation or result in death. Growing evidence suggests that V. vulnificus virulence factors and regulators play a large role in disease progression, involving host resistance, cellular damage, iron acquisition, virulence regulation and host immune responses. Its disease mechanism remains largely undefined. Further evaluation of pathogenic mechanisms is important for selecting appropriate measures to prevent and treat V. vulnificus infection. In this review, the possible pathogenesis of V. vulnificus infection is described to provide a reference for treatment and prevention.
Collapse
Affiliation(s)
- Kun Lu
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Yang Li
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Rui Chen
- Department of Orthopedics, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Hua Yang
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Yong Wang
- Hemodialysis Center, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Wei Xiong
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Fang Xu
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Qijun Yuan
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Haihui Liang
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Xian Xiao
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Renqiang Huang
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Zhipeng Chen
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Chunou Tian
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Songqing Wang
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| |
Collapse
|
4
|
Yang H, Song H, Zhang J, Li W, Han Q, Zhang W. Proteomic analysis reveals the adaptation of Vibrio splendidus to an iron deprivation condition. Appl Microbiol Biotechnol 2023; 107:2533-2546. [PMID: 36922441 DOI: 10.1007/s00253-023-12460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Vibrio splendidus is a ubiquitous Gram-negative marine bacterium that causes diseases within a wide range of marine cultured animals. Since iron deprivation is the frequent situation that the bacteria usually encounter, we aimed to explore the effect of iron deprivation on the proteomic profile of V. splendidus in the present study. There were 425 differentially expressed proteins (DEPs) responded to the iron deprivation condition. When the cells were grown under iron deprivation condition, the oxidation‒reduction processes, single-organism metabolic processes, the catalytic activity, and binding activity were downregulated, while the transport process, membrane cell component, and ion binding activity were upregulated, apart from the iron uptake processes. Kyoto Encyclopedia of Genes and Genomes analysis showed that various metabolism pathways, biosynthesis pathways, energy generation pathways of tricarboxylic acid cycle, and oxidative phosphorylation were downregulated, while various degradation pathways and several special metabolism pathways were upregulated. The proteomic profiles of cells at a OD600 ≈ 0.4 grown under iron deprivation condition showed high similarity to that of the cells at a OD600 ≈ 0.8 grown without iron chelator 2,2'-bipyridine. Correspondingly, the protease activity, the activity of autoinducer 2 (AI-2), and indole content separately catalyzed by LuxS and TnaA, were measured to verify the proteomic data. Our present study gives basic information on the global protein profiles of V. splendidus grown under iron deprivation condition and suggests that the iron deprivation condition cause the cell growth enter a state of higher cell density earlier. KEY POINTS: • Adaptation of V. splendidus to iron deprivation was explored by proteomic analysis. • GO and KEGG of DEPs under different iron levels or cell densities were determined. • Iron deprivation caused the cell enter a state of higher cell density earlier.
Collapse
Affiliation(s)
- Huirong Yang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Huimin Song
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Jinxia Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Weisheng Li
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Qingxi Han
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Weiwei Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China.
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China.
| |
Collapse
|
5
|
Therapeutic potential of otilonium bromide against Vibrio vulnificus. Res Microbiol 2023; 174:103992. [PMID: 36122890 DOI: 10.1016/j.resmic.2022.103992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023]
Abstract
New drugs are urgently required for the treatment of infections due to an increasing number of new strains of diseases-causing pathogens and antibiotic-resistant bacteria. A library of drugs approved by Food and Drug Administration was screened for efficacy against Vibrio vulnificus using antimicrobial assays. We found that otilonium bromide showed potent antimicrobial activity against V.vulnificus and had a synergistic effect in combination with antibiotics. Field emission transmission electron microscope images revealed that otilonium bromide caused cell division defects in V.vulnificus. Moreover, it significantly inhibited V.vulnificus swarming motility and adhesion to host cells at concentrations lower than the minimum inhibitory concentration. To investigate its inhibitory action mechanisms, we examined the effect of otilonium bromide on the expression levels of several proteins crucial for V.vulnificus growth, motility, and adhesion. It decreased the protein expression levels of cAMP receptor protein and flagellin B, but not HlyU or OmpU. In addition, otilonium bromide significantly decreased the expression levels of outer membrane protein TolCV1, thus inhibiting RtxA1 toxin secretion and substantially reducing V.vulnificus cytotoxicity to host cells. Collectively, these findings suggest that otilonium bromide may be considered as a promising candidate for treating V.vulnificus infections.
Collapse
|
6
|
Targeting Virulence Genes Expression in Vibrio vulnificus by Alternative Carbon Sources. Int J Mol Sci 2022; 23:ijms232315278. [PMID: 36499602 PMCID: PMC9737408 DOI: 10.3390/ijms232315278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
Vibrio vulnificus is an opportunistic human pathogen causing self-limiting gastroenteritis, life-threatening necrotizing soft tissue infection, and fulminating septicaemia. An increasing rate of infections has been reported worldwide, characterized by sudden onset of sepsis and/or rapid progression to irreversible tissue damage or death. Timely intervention is essential to control the infection, and it is based on antibiotic therapy, which does not always result in the effective and rapid blocking of virulence. Inhibitors of essential virulence regulators have been reported in the last years, but none of them has been further developed, so far. We aimed to investigate whether exposure to some carbon compounds, mostly easily metabolizable, could result in transcriptional down-regulation of virulence genes. We screened various carbon sources already available for human use (thus potentially easy to be repurposed), finding some of them (including mannitol and glycerol) highly effective in down-regulating, in vitro and ex-vivo, the mRNA levels of several relevant -even essential- virulence factors (hlyU, lrp, rtxA, vvpE, vvhA, plpA, among others). This paves the way for further investigations aiming at their development as virulence inhibitors and to unveil mechanisms explaining such observed effects. Moreover, data suggesting the existence of additional regulatory networks of some virulence genes are reported.
Collapse
|
7
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Brumfield KD, Usmani M, Chen KM, Gangwar M, Jutla AS, Huq A, Colwell RR. Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp. Environ Microbiol 2021; 23:7314-7340. [PMID: 34390611 DOI: 10.1111/1462-2920.15716] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Vibrio spp. thrive in warm water and moderate salinity, and they are associated with aquatic invertebrates, notably crustaceans and zooplankton. At least 12 Vibrio spp. are known to cause infection in humans, and Vibrio cholerae is well documented as the etiological agent of pandemic cholera. Pathogenic non-cholera Vibrio spp., e.g., Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Incidence of vibriosis is rising globally, with evidence that anthropogenic factors, primarily emissions of carbon dioxide associated with atmospheric warming and more frequent and intense heatwaves, significantly influence environmental parameters, e.g., temperature, salinity, and nutrients, all of which can enhance growth of Vibrio spp. in aquatic ecosystems. It is not possible to eliminate Vibrio spp., as they are autochthonous to the aquatic environment and many play a critical role in carbon and nitrogen cycling. Risk prediction models provide an early warning that is essential for safeguarding public health. This is especially important for regions of the world vulnerable to infrastructure instability, including lack of 'water, sanitation, and hygiene' (WASH), and a less resilient infrastructure that is vulnerable to natural calamity, e.g., hurricanes, floods, and earthquakes, and/or social disruption and civil unrest, arising from war, coups, political crisis, and economic recession. Incorporating environmental, social, and behavioural parameters into such models allows improved prediction, particularly of cholera epidemics. We have reported that damage to WASH infrastructure, coupled with elevated air temperatures and followed by above average rainfall, promotes exposure of a population to contaminated water and increases the risk of an outbreak of cholera. Interestingly, global predictive risk models successful for cholera have the potential, with modification, to predict diseases caused by other clinically relevant Vibrio spp. In the research reported here, the focus was on environmental parameters associated with incidence and distribution of clinically relevant Vibrio spp. and their role in disease transmission. In addition, molecular methods designed for detection and enumeration proved useful for predictive modelling and are described, namely in the context of prediction of environmental conditions favourable to Vibrio spp., hence human health risk.
Collapse
Affiliation(s)
- Kyle D Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Moiz Usmani
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Kristine M Chen
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Mayank Gangwar
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Antarpreet S Jutla
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| |
Collapse
|
9
|
Gong Y, Guo RH, Rhee JH, Kim YR. TolCV1 Has Multifaceted Roles During Vibrio vulnificus Infection. Front Cell Infect Microbiol 2021; 11:673222. [PMID: 33996641 PMCID: PMC8120275 DOI: 10.3389/fcimb.2021.673222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/12/2021] [Indexed: 01/22/2023] Open
Abstract
RtxA1 is a major cytotoxin of Vibrio vulnificus (V. vulnificus) causing fatal septicemia and necrotic wound infections. Our previous work has shown that RpoS regulates the expression and secretion of V. vulnificus RtxA1 toxin. This study was conducted to further investigate the potential mechanisms of RpoS on RtxA1 secretion. First, V. vulnificus TolCV1 and TolCV2 proteins, two Escherichia coli TolC homologs, were measured at various time points by Western blotting. The expression of TolCV1 was increased time-dependently, whereas that of TolCV2 was decreased. Expression of both TolCV1 and TolCV2 was significantly downregulated in an rpoS deletion mutation. Subsequently, we explored the roles of TolCV1 and TolCV2 in V. vulnificus pathogenesis. Western blot analysis showed that RtxA1 toxin was exported by TolCV1, not TolCV2, which was consistent with the cytotoxicity results. Furthermore, the expression of TolCV1 and TolCV2 was increased after treatment of the host signal bile salt and the growth of tolCV1 mutant was totally abolished in the presence of bile salt. A tolCV1 mutation resulted in significant reduction of V. vulnificus induced-virulence in mice. Taken together, TolCV1 plays key roles in RtxA1 secretion, bile salt resistance, and mice lethality of V. vulnificus, suggesting that TolCV1 could be an attractive target for the design of new medicines to treat V. vulnificus infections.
Collapse
Affiliation(s)
- Yue Gong
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Rui Hong Guo
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Department of Microbiology, Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, South Korea
| | - Young Ran Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
10
|
Pang R, Li Y, Liao K, Guo P, Li Y, Yang X, Zhang S, Lei T, Wang J, Chen M, Wu S, Xue L, Wu Q. Genome- and Proteome-Wide Analysis of Lysine Acetylation in Vibrio vulnificus Vv180806 Reveals Its Regulatory Roles in Virulence and Antibiotic Resistance. Front Microbiol 2020; 11:591287. [PMID: 33250879 PMCID: PMC7674927 DOI: 10.3389/fmicb.2020.591287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Infection with Vibrio vulnificus is notorious for its atypical clinical manifestations and irreversible disease progression. Lysine acetylation is a conserved post-translational modification (PTM) that plays a critical regulatory role in diverse cellular processes. However, little is known about the role of lysine acetylation on the pathogenesis of V. vulnificus. Here, we report the complete genome sequence and a global profile for protein lysine acetylation of V. vulnificus Vv180806, a highly cefoxitin resistant strain isolated from a mortality case. The assembled genome comprised two circular chromosomes and one circular plasmid; it contained 4,770 protein-coding genes and 153 RNA genes. Phylogenetic analysis revealed genetic homology of this strain with other V. vulnificus strains from food sources. Of all the proteins in this strain, 1,924 (40.34%) were identified to be acetylated at 6,626 sites. The acetylated proteins were enriched in metabolic processes, binding functions, cytoplasm, and multiple central metabolic pathways. Moreover, the acetylation was found in most identified virulence factors of this strain, suggesting its potentially important role in bacterial virulence. Our work provides insights into the genomic and acetylomic features responsible for the virulence and antibiotic resistance of V. vulnificus, which will facilitate future investigations on the pathogenesis of this bacterium.
Collapse
Affiliation(s)
- Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Penghao Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanping Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuhong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Guo RH, Gong Y, Kim SY, Rhee JH, Kim YR. DIDS inhibits Vibrio vulnificus cytotoxicity by interfering with TolC-mediated RtxA1 toxin secretion. Eur J Pharmacol 2020; 884:173407. [PMID: 32735984 DOI: 10.1016/j.ejphar.2020.173407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022]
Abstract
Vibrio vulnificus (V. vulnificus) infection, frequently resulting in fatal septicemia, has become a growing health concern worldwide. The present study aimed to explore the potential agents that could protect against V. vulnificus cytotoxicity, and to analyze the possible underlying mechanisms. First, we observed that 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate (DIDS) significantly suppressed V. vulnificus cytotoxicity to host cells by using a lactate dehydrogenase (LDH) assay. DIDS did not exhibit any effect on host cell viability, bacterial growth, microbial adhesion and swarming motility. DIDS effectively lowered V. vulnificus RtxA1 toxin-induced calcium influx into host mitochondria and RtxA1 binding to host cells. To further elucidate the underlying mechanism, the synthesis and secretion of RtxA1 toxin were investigated by Western blotting. Intriguingly, DIDS selectively inhibited the secretion of RtxA1 toxin, but did not influence its synthesis. Consequently, the outer membrane portal TolC, a key conduit for RtxA1 export coupled with tripartite efflux pumps, was examined by RT-PCR and Western blotting. We found that DIDS significantly reduced the expression of TolCV1 protein at the transcriptional level. Taken together, these results suggest that DIDS is a promising new paradigm as an antimicrobial drug that targets TolC-mediated toxin.
Collapse
Affiliation(s)
- Rui Hong Guo
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Republic of Korea
| | - Yue Gong
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Republic of Korea
| | - Soo Young Kim
- Clinical Vaccine R&D Center and Department of Microbiology, Chonnam National University Medical School, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center and Department of Microbiology, Chonnam National University Medical School, Republic of Korea
| | - Young Ran Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Republic of Korea.
| |
Collapse
|
12
|
Li G, Wang MY. The role of Vibrio vulnificus virulence factors and regulators in its infection-induced sepsis. Folia Microbiol (Praha) 2019; 65:265-274. [PMID: 31840198 DOI: 10.1007/s12223-019-00763-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
Due to the development of Marine aquaculture, infections caused by Vibrio vulnificus are common all over the world. Symptoms of V. vulnificus infection vary from gastrointestinal illness to septicemia. After infection with V. vulnificus, some patients showed gastrointestinal symptoms, including vomiting, fever, diarrhea, and so on. Others appeared wound infection at the site of contact with bacteria, and even developed sepsis. Once it develops into sepsis, the prognosis of patients is very poor. However, its underlying pathogenic mechanism remains largely undetermined. Growing evidence shows that it can induce primary septicemia mainly via essential virulence factors and regulators. Therefore, it is important to identify the factors that play roles in sepsis. In this review, we systematically expounded the role of V. vulnificus virulence factors and regulators in its infection-induced sepsis in order to provide useful information for the treatment and prevention of V. vulnificus.
Collapse
Affiliation(s)
- Gang Li
- Weihai Clinical Medical School, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China.,Weihai Municipal Hospital, Weihai, 264200, China
| | - Ming-Yi Wang
- Weihai Clinical Medical School, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China. .,Weihai Municipal Hospital, Weihai, 264200, China.
| |
Collapse
|
13
|
Guo RH, Im YJ, Shin SI, Jeong K, Rhee JH, Kim YR. Vibrio vulnificus RtxA1 cytotoxin targets filamin A to regulate PAK1- and MAPK-dependent cytoskeleton reorganization and cell death. Emerg Microbes Infect 2019; 8:934-945. [PMID: 31237474 PMCID: PMC6598492 DOI: 10.1080/22221751.2019.1632153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytoskeletal rearrangement and acute cytotoxicity occur in Vibrio vulnificus-infected host cells. RtxA1 toxin, a multifunctional autoprocessing repeats-in-toxin (MARTX), is essential for the pathogenesis of V. vulnificus and the programmed necrotic cell death. In this study, HeLa cells expressing RtxA1 amino acids 1491–1971 fused to GFP were observed to be rounded. Through yeast two-hybrid screening and subsequent immunoprecipitation validation assays, we confirmed the specific binding of a RtxA11491–1971 fragment with host-cell filamin A, an actin cross-linking scaffold protein. Downregulation of filamin A expression decreased the cytotoxicity of RtxA1 toward host cells. Furthermore, the phosphorylation of JNK and p38 MAPKs was induced by the RtxA1-filamin A interaction during the toxin-mediated cell death. However, the phosphorylation of these MAPKs was not observed during the RtxA1 intoxication of filamin A-deficient M2 cells. In addition, the depletion of pak1, which appeared to be activated by the RtxA1-filamin A interaction, inhibited RtxA1-induced phosphorylation of JNK and p38, and the cells treated with a pak1 inhibitor exhibited decreased RtxA1-mediated cytoskeletal rearrangement and cytotoxicity. Thus, the binding of filamin A by the RtxA11491–1971 domain appears to be a requisite to pak1-mediated MAPK activation, which contributes to the cytoskeletal reorganization and host cell death.
Collapse
Affiliation(s)
- Rui Hong Guo
- a College of Pharmacy and Research Institute of Drug Development , Chonnam National University , Gwangju , Republic of Korea
| | - Young Jun Im
- a College of Pharmacy and Research Institute of Drug Development , Chonnam National University , Gwangju , Republic of Korea
| | - Soo Im Shin
- c Department of Bioengineering and Biotechnology, College of Engineering , Chonnam National University , Gwangju , Republic of Korea
| | - Kwangjoon Jeong
- b Clinical Vaccine R&D Center and Department of Microbiology , Chonnam National University Medical School , Hwasun , Republic of Korea
| | - Joon Haeng Rhee
- b Clinical Vaccine R&D Center and Department of Microbiology , Chonnam National University Medical School , Hwasun , Republic of Korea
| | - Young Ran Kim
- a College of Pharmacy and Research Institute of Drug Development , Chonnam National University , Gwangju , Republic of Korea
| |
Collapse
|
14
|
Lee A, Kim MS, Cho D, Jang KK, Choi SH, Kim TS. Vibrio vulnificus RtxA Is a Major Factor Driving Inflammatory T Helper Type 17 Cell Responses in vitro and in vivo. Front Immunol 2018; 9:2095. [PMID: 30283443 PMCID: PMC6157323 DOI: 10.3389/fimmu.2018.02095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022] Open
Abstract
T helper type 17 (Th17) cells are a subset of pro-inflammatory T helper cells that mediate host defense and pathological inflammation. We have previously reported that host dendritic cells (DCs) infected with Vibrio vulnificus induce Th17 responses through the production of several pro-inflammatory cytokines, including interleukin (IL)-1β and IL-6. V. vulnificus produces RTX toxin (RtxA), an important virulence factor that determines successful pathophysiology. In this study, we investigated the involvement of RtxA from V. vulnificus in Th17 cell induction through the activation and maturation of DCs. The increased expression of the DC surface marker CD40 caused by V. vulnificus wild-type infection was reduced by rtxA gene mutation in V. vulnificus. The mRNA and protein levels of Th17 polarization-related cytokines also decreased in V. vulnificus rtxA mutant-infected DCs. In addition, the co-culture of Th cells and DCs infected with rtxA mutant V. vulnificus resulted in reduction in DC-mediated Th17 responses. Th17 cell responses in the small intestinal lamina propria decreased in mice inoculated with V. vulnificus rtxA mutant as compared to those inoculated with the wild-type strain. These decreases in DC maturation, Th17-polarizing cytokine secretion, and Th17 responses attributed to rtxA mutation were restored following infection with the rtxA revertant strain. Furthermore, the mutation in the hlyU gene encoding the activator of rtxA1 gene reproduced the results observed with rtxA mutation. Taken together, V. vulnificus, by means of RtxA, induces inflammatory Th17 responses, which may be associated with adaptive responses of the host against V. vulnificus infection.
Collapse
Affiliation(s)
- Arim Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Myun Soo Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Daeho Cho
- Institute of Convergence Science, Korea University, Seoul, South Korea
| | - Kyung Ku Jang
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
15
|
Osei-Adjei G, Huang X, Zhang Y. The extracellular proteases produced by Vibrio parahaemolyticus. World J Microbiol Biotechnol 2018; 34:68. [DOI: 10.1007/s11274-018-2453-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022]
|