1
|
He LL, Wang X, O'Neill Rothenberg D, Xu X, Wang HH, Deng X, Cui ZN. A novel strategy to control Pseudomonas syringae through inhibition of type III secretion system. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105471. [PMID: 37532345 DOI: 10.1016/j.pestbp.2023.105471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 08/04/2023]
Abstract
Pseudomonas syringae (P. syringae) is a highly prevalent Gram-negative pathogen with over 60 pathogenic variants that cause yield losses of up to 80% in various crops. Traditional control methods mainly involve the application of antibiotics to inactivate pathogenic bacteria, but large-scale application of antibiotics has led to the development of bacterial resistance. Gram-negative pathogens including P. syringae commonly use the type III secretion system (T3SS) as a transport channel to deliver effector proteins into host cells, disrupting host defences and facilitating virulence, providing a novel target for antibacterial drug development. In this study, we constructed a high-throughput screening reporter system based on our previous work to screen for imidazole, oxazole and thiazole compounds. The screening indicated that the three compounds (II-14, II-15 and II-24) significantly inhibited hrpW and hrpL gene promoter activity without influencing the growth of P. syringae, and the inhibitory activity was better than that of the positive control sulforaphane (4-methylsulfinylbutyl isothiocyanate, SFN) at 50 μM. Three compounds suppressed the transcript levels of representative T3SS genes to different degrees, suggesting that the compounds may suppress the expression of T3SS by modulating the HrpR/S-HrpL regulatory pathway. Inoculation experiments indicated that all three compounds suppressed the pathogenicity of Pseudomonas syringae pv. tomato DC3000 in tomato and Pseudomonas syringae pv. phaseolicola 1448A in bean to varying degrees. One representative compound, II-15, significantly inhibited the secretion of the Pst DC3000 AvrPto effector protein. These findings provide a theoretical basis for the development of novel P. syringae T3SS inhibitors for application in disease prevention and control.
Collapse
Affiliation(s)
- Lu-Lu He
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wang
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | | | - Xiaoli Xu
- Instrumental Analysis & Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Hong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Zi-Ning Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Rocha RF, Martins PGA, D'Muniz Pereira H, Brandão-Neto J, Thiemann OH, Terenzi H, Menegatti ACO. Crystal structure of the Cys-NO modified YopH tyrosine phosphatase. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140754. [PMID: 34995802 DOI: 10.1016/j.bbapap.2022.140754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/21/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are key virulence factors in pathogenic bacteria, consequently, they have become important targets for new approaches against these pathogens, especially in the fight against antibiotic resistance. Among these targets of interest YopH (Yersinia outer protein H) from virulent species of Yersinia is an example. PTPs can be reversibly inhibited by nitric oxide (NO) since the oxidative modification of cysteine residues may influence the protein structure and catalytic activity. We therefore investigated the effects of NO on the structure and enzymatic activity of Yersinia enterocolitica YopH in vitro. Through phosphatase activity assays, we observe that in the presence of NO YopH activity was inhibited by 50%, and that this oxidative modification is partially reversible in the presence of DTT. Furthermore, YopH S-nitrosylation was clearly confirmed by a biotin switch assay, high resolution mass spectrometry (MS) and X-ray crystallography approaches. The crystal structure confirmed the S-nitrosylation of the catalytic cysteine residue, Cys403, while the MS data provide evidence that Cys221 and Cys234 might also be modified by NO. Interestingly, circular dichroism spectroscopy shows that the S-nitrosylation affects secondary structure of wild type YopH, though to a lesser extent on the catalytic cysteine to serine YopH mutant. The data obtained demonstrate that S-nitrosylation inhibits the catalytic activity of YopH, with effects beyond the catalytic cysteine. These findings are helpful for designing effective YopH inhibitors and potential therapeutic strategies to fight this pathogen or others that use similar mechanisms to interfere in the signal transduction pathways of their hosts.
Collapse
Affiliation(s)
- Ruth F Rocha
- Laboratório de Biologia Molecular Estrutural, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Priscila G A Martins
- Laboratório de Biologia Molecular Estrutural, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | | | - José Brandão-Neto
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX110DE, United Kingdom
| | - Otavio Henrique Thiemann
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil; Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Hernán Terenzi
- Laboratório de Biologia Molecular Estrutural, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil.
| | - Angela C O Menegatti
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil.
| |
Collapse
|
3
|
Webster E, Seiger KW, Core SB, Collar AL, Knapp-Broas H, Graham J, Shrestha M, Afzaal S, Geisler WM, Wheeler CM, Chackerian B, Frietze KM, Lijek RS. Immunogenicity and Protective Capacity of a Virus-like Particle Vaccine against Chlamydia trachomatis Type 3 Secretion System Tip Protein, CT584. Vaccines (Basel) 2022; 10:vaccines10010111. [PMID: 35062772 PMCID: PMC8779370 DOI: 10.3390/vaccines10010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 10/28/2022] Open
Abstract
An effective vaccine against Chlamydia trachomatis is urgently needed as infection rates continue to rise and C. trachomatis causes reproductive morbidity. An obligate intracellular pathogen, C. trachomatis employs a type 3 secretion system (T3SS) for host cell entry. The tip of the injectosome is composed of the protein CT584, which represents a potential target for neutralization with vaccine-induced antibody. Here, we investigate the immunogenicity and efficacy of a vaccine made of CT584 epitopes coupled to a bacteriophage virus-like particle (VLP), a novel platform for Chlamydia vaccines modeled on the success of HPV vaccines. Female mice were immunized intramuscularly, challenged transcervically with C. trachomatis, and assessed for systemic and local antibody responses and bacterial burden in the upper genital tract. Immunization resulted in a 3-log increase in epitope-specific IgG in serum and uterine homogenates and in the detection of epitope-specific IgG in uterine lavage at low levels. By contrast, sera from women infected with C. trachomatis and virgin controls had similarly low titers to CT584 epitopes, suggesting these epitopes are not systemically immunogenic during natural infection but can be rendered immunogenic by the VLP platform. C. trachomatis burden in the upper genital tract of mice varied after active immunization, yet passive protection was achieved when immune sera were pre-incubated with C. trachomatis prior to inoculation into the genital tract. These data demonstrate the potential for antibody against the T3SS to contribute to protection against C. trachomatis and the value of VLPs as a novel platform for C. trachomatis vaccines.
Collapse
Affiliation(s)
- Everett Webster
- Department of Biological Sciences, Mount Holyoke College, 50 College St., South Hadley, MA 01075, USA; (E.W.); (K.W.S.); (H.K.-B.); (J.G.); (M.S.); (S.A.)
| | - Kyra W. Seiger
- Department of Biological Sciences, Mount Holyoke College, 50 College St., South Hadley, MA 01075, USA; (E.W.); (K.W.S.); (H.K.-B.); (J.G.); (M.S.); (S.A.)
| | - Susan B. Core
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, MSC 08-4660, 1 University of New Mexico, Albuquerque, NM 87131, USA; (S.B.C.); (A.L.C.); (B.C.); (K.M.F.)
| | - Amanda L. Collar
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, MSC 08-4660, 1 University of New Mexico, Albuquerque, NM 87131, USA; (S.B.C.); (A.L.C.); (B.C.); (K.M.F.)
| | - Hannah Knapp-Broas
- Department of Biological Sciences, Mount Holyoke College, 50 College St., South Hadley, MA 01075, USA; (E.W.); (K.W.S.); (H.K.-B.); (J.G.); (M.S.); (S.A.)
| | - June Graham
- Department of Biological Sciences, Mount Holyoke College, 50 College St., South Hadley, MA 01075, USA; (E.W.); (K.W.S.); (H.K.-B.); (J.G.); (M.S.); (S.A.)
| | - Muskan Shrestha
- Department of Biological Sciences, Mount Holyoke College, 50 College St., South Hadley, MA 01075, USA; (E.W.); (K.W.S.); (H.K.-B.); (J.G.); (M.S.); (S.A.)
| | - Sarah Afzaal
- Department of Biological Sciences, Mount Holyoke College, 50 College St., South Hadley, MA 01075, USA; (E.W.); (K.W.S.); (H.K.-B.); (J.G.); (M.S.); (S.A.)
| | - William M. Geisler
- Department of Medicine, University of Alabama at Birmingham, 703 19th St. S, ZRB 242, Birmingham, AL 35294, USA;
| | - Cosette M. Wheeler
- Center for HPV Prevention, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, MSC 08-4640, 1 University of New Mexico, Albuquerque, NM 87131, USA;
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, MSC 08-4660, 1 University of New Mexico, Albuquerque, NM 87131, USA; (S.B.C.); (A.L.C.); (B.C.); (K.M.F.)
| | - Kathryn M. Frietze
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, MSC 08-4660, 1 University of New Mexico, Albuquerque, NM 87131, USA; (S.B.C.); (A.L.C.); (B.C.); (K.M.F.)
- Clinical and Translational Science Center, University of New Mexico Health Sciences, MSC 08-4635, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Rebeccah S. Lijek
- Department of Biological Sciences, Mount Holyoke College, 50 College St., South Hadley, MA 01075, USA; (E.W.); (K.W.S.); (H.K.-B.); (J.G.); (M.S.); (S.A.)
- Correspondence: ; Tel.: +1-(413)-538-2487
| |
Collapse
|
4
|
Kang S, Lumactud R, Li N, Bell TH, Kim HS, Park SY, Lee YH. Harnessing Chemical Ecology for Environment-Friendly Crop Protection. PHYTOPATHOLOGY 2021; 111:1697-1710. [PMID: 33908803 DOI: 10.1094/phyto-01-21-0035-rvw] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heavy reliance on synthetic pesticides for crop protection has become increasingly unsustainable, calling for robust alternative strategies that do not degrade the environment and vital ecosystem services. There are numerous reports of successful disease control by various microbes used in small-scale trials. However, inconsistent efficacy has hampered their large-scale application. A better understanding of how beneficial microbes interact with plants, other microbes, and the environment and which factors affect disease control efficacy is crucial to deploy microbial agents as effective and reliable pesticide alternatives. Diverse metabolites produced by plants and microbes participate in pathogenesis and defense, regulate the growth and development of themselves and neighboring organisms, help maintain cellular homeostasis under various environmental conditions, and affect the assembly and activity of plant and soil microbiomes. However, research on the metabolites associated with plant health-related processes, except antibiotics, has not received adequate attention. This review highlights several classes of metabolites known or suspected to affect plant health, focusing on those associated with biocontrol and belowground plant-microbe and microbe-microbe interactions. The review also describes how new insights from systematic explorations of the diversity and mechanism of action of bioactive metabolites can be harnessed to develop novel crop protection strategies.
Collapse
Affiliation(s)
- Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Rhea Lumactud
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ningxiao Li
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Hye-Seon Kim
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, U.S.A
| | - Sook-Young Park
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
5
|
Developing Cyclic Peptomers as Broad-Spectrum Type III Secretion System Inhibitors in Gram-Negative Bacteria. Antimicrob Agents Chemother 2021; 65:e0169020. [PMID: 33875435 PMCID: PMC8373237 DOI: 10.1128/aac.01690-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antibiotic-resistant bacteria are an emerging global health threat. New antimicrobials are urgently needed. The injectisome type III secretion system (T3SS), required by dozens of Gram-negative bacteria for virulence but largely absent from nonpathogenic bacteria, is an attractive antimicrobial target. We previously identified synthetic cyclic peptomers, inspired by the natural product phepropeptin D, that inhibit protein secretion through the Yersinia Ysc and Pseudomonas aeruginosa Psc T3SSs but do not inhibit bacterial growth. Here, we describe the identification of an isomer, 4EpDN, that is 2-fold more potent (50% inhibitory concentration [IC50] of 4 μM) than its parental compound. Furthermore, 4EpDN inhibited the Yersinia Ysa and the Salmonella SPI-1 T3SSs, suggesting that this cyclic peptomer has broad efficacy against evolutionarily distant injectisome T3SSs. Indeed, 4EpDN strongly inhibited intracellular growth of Chlamydia trachomatis in HeLa cells, which requires the T3SS. 4EpDN did not inhibit the unrelated twin arginine translocation (Tat) system, nor did it impact T3SS gene transcription. Moreover, although the injectisome and flagellar T3SSs are evolutionarily and structurally related, the 4EpDN cyclic peptomer did not inhibit secretion of substrates through the Salmonella flagellar T3SS, indicating that cyclic peptomers broadly but specifically target the injectisome T3SS. 4EpDN reduced the number of T3SS needles detected on the surface of Yersinia pseudotuberculosis as detected by microscopy. Collectively, these data suggest that cyclic peptomers specifically inhibit the injectisome T3SS from a variety of Gram-negative bacteria, possibly by preventing complete T3SS assembly.
Collapse
|
6
|
Sebbane F, Lemaître N. Antibiotic Therapy of Plague: A Review. Biomolecules 2021; 11:724. [PMID: 34065940 PMCID: PMC8151713 DOI: 10.3390/biom11050724] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
Plague-a deadly disease caused by the bacterium Yersinia pestis-is still an international public health concern. There are three main clinical forms: bubonic plague, septicemic plague, and pulmonary plague. In all three forms, the symptoms appear suddenly and progress very rapidly. Early antibiotic therapy is essential for countering the disease. Several classes of antibiotics (e.g., tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, chloramphenicol, rifamycin, and β-lactams) are active in vitro against the majority of Y. pestis strains and have demonstrated efficacy in various animal models. However, some discrepancies have been reported. Hence, health authorities have approved and recommended several drugs for prophylactic or curative use. Only monotherapy is currently recommended; combination therapy has not shown any benefits in preclinical studies or case reports. Concerns about the emergence of multidrug-resistant strains of Y. pestis have led to the development of new classes of antibiotics and other therapeutics (e.g., LpxC inhibitors, cationic peptides, antivirulence drugs, predatory bacteria, phages, immunotherapy, host-directed therapy, and nutritional immunity). It is difficult to know which of the currently available treatments or therapeutics in development will be most effective for a given form of plague. This is due to the lack of standardization in preclinical studies, conflicting data from case reports, and the small number of clinical trials performed to date.
Collapse
Affiliation(s)
- Florent Sebbane
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nadine Lemaître
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
- Laboratoire de Bactériologie-Hygiène, Centre Hospitalier Universitaire Amiens Picardie, UR 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Université de Picardie Jules Verne, F-80000 Amiens, France
| |
Collapse
|
7
|
Bajunaid W, Haidar-Ahmad N, Kottarampatel AH, Ourida Manigat F, Silué N, F. Tchagang C, Tomaro K, Campbell-Valois FX. The T3SS of Shigella: Expression, Structure, Function, and Role in Vacuole Escape. Microorganisms 2020; 8:microorganisms8121933. [PMID: 33291504 PMCID: PMC7762205 DOI: 10.3390/microorganisms8121933] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Shigella spp. are one of the leading causes of infectious diarrheal diseases. They are Escherichia coli pathovars that are characterized by the harboring of a large plasmid that encodes most virulence genes, including a type III secretion system (T3SS). The archetypal element of the T3SS is the injectisome, a syringe-like nanomachine composed of approximately 20 proteins, spanning both bacterial membranes and the cell wall, and topped with a needle. Upon contact of the tip of the needle with the plasma membrane, the injectisome secretes its protein substrates into host cells. Some of these substrates act as translocators or effectors whose functions are key to the invasion of the cytosol and the cell-to-cell spread characterizing the lifestyle of Shigella spp. Here, we review the structure, assembly, function, and methods to measure the activity of the injectisome with a focus on Shigella, but complemented with data from other T3SS if required. We also present the regulatory cascade that controls the expression of T3SS genes in Shigella. Finally, we describe the function of translocators and effectors during cell-to-cell spread, particularly during escape from the vacuole, a key element of Shigella’s pathogenesis that has yet to reveal all of its secrets.
Collapse
Affiliation(s)
- Waad Bajunaid
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nathaline Haidar-Ahmad
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Anwer Hasil Kottarampatel
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - France Ourida Manigat
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Navoun Silué
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Caetanie F. Tchagang
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kyle Tomaro
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence:
| |
Collapse
|
8
|
Abstract
The independent naming of components of injectisome-type type III secretion systems in different bacterial species has resulted in considerable confusion, impeding accessibility of the literature and hindering communication between scientists of the same field. A unified nomenclature had been proposed by Hueck more than 20 years ago. It found little attention for many years, but usage was sparked again by recent reviews and an international type III secretion meeting in 2016. Here, we propose that the field consistently switches to an extended version of this nomenclature to be no longer lost in translation.
Collapse
|
9
|
Hooker-Romero D, Mettert E, Schwiesow L, Balderas D, Alvarez PA, Kicin A, Gonzalez AL, Plano GV, Kiley PJ, Auerbuch V. Iron availability and oxygen tension regulate the Yersinia Ysc type III secretion system to enable disseminated infection. PLoS Pathog 2019; 15:e1008001. [PMID: 31869388 PMCID: PMC6946166 DOI: 10.1371/journal.ppat.1008001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/07/2020] [Accepted: 11/10/2019] [Indexed: 11/21/2022] Open
Abstract
The enteropathogen Yersinia pseudotuberculosis and the related plague agent Y. pestis require the Ysc type III secretion system (T3SS) to subvert phagocyte defense mechanisms and cause disease. Yet type III secretion (T3S) in Yersinia induces growth arrest and innate immune recognition, necessitating tight regulation of the T3SS. Here we show that Y. pseudotuberculosis T3SS expression is kept low under anaerobic, iron-rich conditions, such as those found in the intestinal lumen where the Yersinia T3SS is not required for growth. In contrast, the Yersinia T3SS is expressed under aerobic or anaerobic, iron-poor conditions, such as those encountered by Yersinia once they cross the epithelial barrier and encounter phagocytic cells. We further show that the [2Fe-2S] containing transcription factor, IscR, mediates this oxygen and iron regulation of the T3SS by controlling transcription of the T3SS master regulator LcrF. IscR binds directly to the lcrF promoter and, importantly, a mutation that prevents this binding leads to decreased disseminated infection of Y. pseudotuberculosis but does not perturb intestinal colonization. Similar to E. coli, Y. pseudotuberculosis uses the Fe-S cluster occupancy of IscR as a readout of oxygen and iron conditions that impact cellular Fe-S cluster homeostasis. We propose that Y. pseudotuberculosis has coopted this system to sense entry into deeper tissues and induce T3S where it is required for virulence. The IscR binding site in the lcrF promoter is completely conserved between Y. pseudotuberculosis and Y. pestis. Deletion of iscR in Y. pestis leads to drastic disruption of T3S, suggesting that IscR control of the T3SS evolved before Y. pestis split from Y. pseudotuberculosis. The Yersinia type III secretion system (T3SS) is an important virulence factor of the enteropathogen Yersinia pseudotuberculosis as well as Yersinia pestis, the causative agent of plague. Although the T3SS promotes Yersinia survival in the host, its activity is not compatible with bacterial growth. Therefore, Yersinia must control where and when to express the T3SS to optimize fitness within the mammalian host. Here we show that Yersinia sense iron availability and oxygen tension, which vary between the intestinal environment and deeper tissues. Importantly, we show that eliminating the ability of Y. pseudotuberculosis to control its T3SS in response to iron and oxygen does not affect colonization of the intestine, where the T3SS is dispensable for growth. However, loss of T3SS control by iron and oxygen severely decreases disseminated infection. We propose that Y. pseudotuberculosis senses iron availability and oxygen tension to detect crossing the intestinal epithelial barrier. As the mechanism by which iron and oxygen control the T3SS is completely conserved between Y. pseudotuberculosis and Y. pestis, yet Y. pestis is not transmitted through the intestinal route, we propose that Y. pestis has retained this T3SS regulatory mechanism to suit its new infection cycle.
Collapse
Affiliation(s)
- Diana Hooker-Romero
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Erin Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Leah Schwiesow
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - David Balderas
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Pablo A. Alvarez
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Anadin Kicin
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Azuah L. Gonzalez
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Gregory V. Plano
- Department of Microbiology and Immunology, University of Miami, Miami, FL, United States of America
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
- * E-mail:
| |
Collapse
|
10
|
Lyons BJE, Strynadka NCJ. On the road to structure-based development of anti-virulence therapeutics targeting the type III secretion system injectisome. MEDCHEMCOMM 2019; 10:1273-1289. [PMID: 31534650 PMCID: PMC6748289 DOI: 10.1039/c9md00146h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
The type III secretion system injectisome is a syringe-like multimembrane spanning nanomachine that is essential to the pathogenicity but not viability of many clinically relevant Gram-negative bacteria, such as enteropathogenic Escherichia coli, Salmonella enterica and Pseudomonas aeruginosa. Due to the rise in antibiotic resistance, new strategies must be developed to treat the growing spectre of drug resistant infections. Targeting the injectisome via an 'anti-virulence strategy' is a promising avenue to pursue as an alternative to the more commonly used bactericidal therapeutics, which have a high propensity for resulting resistance development and often more broad killing profile, including unwanted side effects in eliminating favourable members of the microbiome. Building on more than a decade of crystallographic work of truncated or isolated forms of the more than two dozen components of the secretion apparatus, recent advances in the field of single-particle cryo-electron microscopy have allowed for the elucidation of atomic resolution structures for many of the type III secretion system components in their assembled, oligomerized state including the needle complex, export apparatus and ATPase. Cryo-electron tomography studies have also advanced our understanding of the direct pathogen-host interaction between the type III secretion system translocon and host cell membrane. These new structural works that further our understanding of the myriad of protein-protein interactions that promote injectisome function will be highlighted in this review, with a focus on those that yield promise for future anti-virulence drug discovery and design. Recently developed inhibitors, including both synthetic, natural product and peptide inhibitors, as well as promising new developments of immunotherapeutics will be discussed. As our understanding of this intricate molecular machinery advances, the development of anti-virulence inhibitors can be enhanced through structure-guided drug design.
Collapse
Affiliation(s)
- Bronwyn J E Lyons
- Department of Biochemistry and Molecular Biology and Center for Blood Research , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada .
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and Center for Blood Research , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada .
| |
Collapse
|
11
|
Abstract
Antibiotic resistance is a major public health threat that has stimulated the scientific community to search for nontraditional therapeutic targets. Because virulence, but not the growth, of many Gram-negative bacterial pathogens depends on the multicomponent type three secretion system injectisome (T3SSi), the T3SSi has been an attractive target for identifying small molecules, peptides, and monoclonal antibodies that inhibit its function to render the pathogen avirulent. While many small-molecule lead compounds have been identified in whole-cell-based high-throughput screens (HTSs), only a few protein targets of these compounds are known; such knowledge is an important step to developing more potent and specific inhibitors. Evaluation of the efficacy of compounds in animal studies is ongoing. Some efforts involving the development of antibodies and vaccines that target the T3SSi are further along and include an antibody that is currently in phase II clinical trials. Continued research into these antivirulence therapies, used alone or in combination with traditional antibiotics, requires combined efforts from both pharmaceutical companies and academic labs.
Collapse
|
12
|
Bohn E, Sonnabend M, Klein K, Autenrieth IB. Bacterial adhesion and host cell factors leading to effector protein injection by type III secretion system. Int J Med Microbiol 2019; 309:344-350. [DOI: 10.1016/j.ijmm.2019.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/02/2019] [Accepted: 05/31/2019] [Indexed: 01/14/2023] Open
|