1
|
Luo H, Ma Y, Su Z, Gu Y, Zhang S, Gerstweiler L. Investigating the stability of chimeric murine polyomavirus VP1 Capsomeres via molecular dynamics simulations and experimental analysis. Int J Biol Macromol 2024; 286:138372. [PMID: 39643186 DOI: 10.1016/j.ijbiomac.2024.138372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The development of modular virus-like particle (VLP) vaccine platforms with genetically inserted antigens in viral structural proteins shows great promise for advancing vaccine technology. However, the instability of many constructs leads to trial-and-error approaches, and the challenge of predicting stability based solely on amino acid sequences remains unresolved, yet highly appealing. This study evaluates the stability of wild-type murine polyomavirus (MPV) VP1 capsomeres and three engineered chimeric variants using molecular dynamics (MD) simulations and laboratory experiments. MD simulations, based on AlphaFold2 predictions and up-to-date all-atom force fields, accurately predicted the thermal stability and hydrophobicity of VP1-based capsomeres. Thermodynamic analysis revealed that binding energies from simulations reliably indicate thermal stability. Experiments and simulation results showed that inserts influence the stability of capsomeres differently, with larger insertions generally having a greater impact on the structures of capsomeres. This leads to increased intra-subunit distances and a higher proportion of flexible regions in the capsomere chassis. Capsomeres with less compact structures were found to have lower thermal stability. Specifically, the thermal transitional temperature (Tm) of the wild-type capsomeres was 46.9 °C, while the Tm values of the three chimeric derivatives were 42.0 °C, 38.8 °C, and 37.7 °C, reflecting a correlation between decreased thermal stability and reduced structural compactness. This research presents a robust approach for predicting the stability of novel VLP constructs based on amino acid sequences, potentially enhancing vaccine design by reducing failures, and suggests a shift towards minimal epitope insertions for improved stability.
Collapse
Affiliation(s)
- Hong Luo
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide 5005, Australia; State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Yanyan Ma
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yanhao Gu
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide 5005, Australia
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Lukas Gerstweiler
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
2
|
Browne DJ, Kelly AM, Brady J, Proietti C, Sarathkumara YD, Pattinson DJ, Doolan DL. Evaluating the stability of host-reference gene expression and simultaneously quantifying parasite burden and host immune responses in murine malaria. Sci Rep 2023; 13:21071. [PMID: 38030676 PMCID: PMC10687243 DOI: 10.1038/s41598-023-48066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
The efficacy of pre-erythrocytic stage malaria antigens or vaccine platforms is routinely assessed in murine models challenged with Plasmodium sporozoites. Relative liver-stage parasite burden is quantified using reverse transcription quantitative PCR (RTqPCR), which relies on constitutively expressed endogenous control reference genes. However, the stability of host-reference gene expression for RTqPCR analysis following Plasmodium challenge and immunization has not been systematically evaluated. Herein, we evaluated the stability of expression of twelve common RTqPCR reference genes in a murine model of Plasmodium yoelii sporozoite challenge and DNA-adenovirus IV 'Prime-Target' immunization. Significant changes in expression for six of twelve reference genes were shown by one-way ANOVA, when comparing gene expression levels among challenge, immunized, and naïve mice groups. These changes were attributed to parasite challenge or immunization when comparing group means using post-hoc Bonferroni corrected multiple comparison testing. Succinate dehydrogenase (SDHA) and TATA-binding protein (TBP) were identified as stable host-reference genes suitable for relative RTqPCR data normalisation, using the RefFinder package. We defined a robust threshold of 'partial-protection' with these genes and developed a strategy to simultaneously quantify matched host parasite burden and cytokine responses following immunisation or challenge. This is the first report systematically identifying reliable host reference genes for RTqPCR analysis following Plasmodium sporozoite challenge. A robust RTqPCR protocol incorporating reliable reference genes which enables simultaneous analysis of host whole-liver cytokine responses and parasite burden will significantly standardise and enhance results between international malaria vaccine efficacy studies.
Collapse
Affiliation(s)
- Daniel J Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
| | - Ashton M Kelly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, QLD, 4072, Australia
| | - Jamie Brady
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
| | - Carla Proietti
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, QLD, 4072, Australia
| | - Yomani D Sarathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, QLD, 4072, Australia
| | - David J Pattinson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia.
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, QLD, 4072, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia.
| |
Collapse
|
3
|
Zhao S, Han X, Lang Y, Xie Y, Yang Z, Zhao Q, Wen Y, Xia J, Wu R, Huang X, Huang Y, Cao S, Lan J, Luo L, Yan Q. Development and efficacy evaluation of remodeled canine parvovirus-like particles displaying major antigenic epitopes of a giant panda derived canine distemper virus. Front Microbiol 2023; 14:1117135. [PMID: 36922967 PMCID: PMC10008873 DOI: 10.3389/fmicb.2023.1117135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Canine parvovirus (CPV) and Canine distemper virus (CDV) can cause fatal diseases in giant panda (Ailuropoda melanoleuca). The main capsid protein of CPV VP2 can be self-assembled to form virus-like particles (VLPs) in vitro, which is of great significance for potential vaccine development. In the present study, we remodeled the VP2 protein of a giant panda-derived CPV, where the major CDV F and N epitopes were incorporated in the N-terminal and loop2 region in two combinations to form chimeric VLPs. The reactivity ability and morphology of the recombinant proteins were confirmed by Western blot, hemagglutination (HA) test and electron microscopy. Subsequently, the immunogenicity of the VLPs was examined in vivo. Antigen-specific antibodies and neutralizing activity were measured by ELISA, hemagglutination inhibition (HI) test and serum neutralization test (SNT), respectively. In addition, antigen specific T cell activation were determined in splenic lymphocytes. The results indicated that the VLPs displayed good reaction with CDV/CPV antibodies, and the heterologous epitopes do not hamper solubility or activity. The VLPs showed decent HA activity, and resembled round-shaped particles with a diameter of 22-26 nm, which is identical to natural virions. VLPs could induce high levels of specific antibodies to CPV and CDV, shown by the indication of neutralizing antibodies in both VP2N and VP2L VLPs group. In addition, splenic lymphocytes of mice immunized with VLPs could proliferate rapidly after stimulation by specific antigen. Taken together, the CPV VP2 VLPs or chimeric VLPs are highly immunogenic, and henceforth could function as CPV/CDV vaccine candidates for giant pandas.
Collapse
Affiliation(s)
- Shan Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Yifei Lang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Zhijie Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Yiping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Sanjie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Jingchao Lan
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Li Luo
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
4
|
Kim MJ, Chu KB, Kang HJ, Yoon KW, Eom GD, Mao J, Lee SH, Subbiah J, Kang SM, Moon EK, Quan FS. Protective Immunity Induced by Immunization with Baculovirus, Virus-like Particle, and Vaccinia Virus Expressing the AMA1 of Plasmodium berghei. Biomedicines 2022; 10:biomedicines10092289. [PMID: 36140395 PMCID: PMC9496152 DOI: 10.3390/biomedicines10092289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Heterologous prime–boost immunization regimens using various vaccine platforms demonstrated promising results against infectious diseases. Here, mice were sequentially immunized with the recombinant baculovirus (rBV), virus-like particle (VLP), and recombinant vaccinia virus (rVV) vaccines expressing the Plasmodium berghei apical membrane antigen 1 (AMA1) for protective efficacy evaluation. The rBV_V_rVV heterologous immunization regimen elicited high levels of parasite-specific IgG, IgG2a, and IgG2b antibody responses in sera. Upon P. berghei challenge infection, proliferations of germinal center B cells in the inguinal lymph nodes, as well as blood CD4+ and CD8+ T cells were induced. More importantly, rBV_V_rVV immunization significantly diminished the parasitemia and prevented drastic bodyweight loss in mice post-challenge infection with P. berghei. Our findings revealed that immunization with rBV, VLP, and rVV expressing the AMA1 conferred protection against P. berghei infection, providing evidence for the potential implementation of this strategy.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ki-Back Chu
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Su-Hwa Lee
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Jeeva Subbiah
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Eun-Kyung Moon
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
5
|
Virus-Like Particle Vaccines Against Respiratory Viruses and Protozoan Parasites. Curr Top Microbiol Immunol 2021; 433:77-106. [PMID: 33650036 DOI: 10.1007/82_2021_232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The field of vaccinology underwent massive advances over the past decades with the introduction of virus-like particles (VLPs), a supra-molecular nanoparticle vaccine platform that resembles viral structures without the ability to replicate in hosts. This innovative approach has been remarkably effective, as evidenced by its profound immunogenicity and safety. These highly desirable intrinsic properties enabled their further development as vaccines against a multitude of diseases. To date, several VLP-based vaccines have already been commercialized and many more are undergoing clinical evaluation prior to FDA approval. However, efficacious vaccines against a plethora of pathogens are still lacking, which imposes a tremendous socioeconomic burden and continues to threaten public health throughout the globe. This is especially the case for several respiratory pathogens and protozoan parasites. In this review, we briefly describe the fundamentals of VLP vaccines and the unique properties that enable these to be such valuable vaccine candidates and summarize current advances in VLP-based vaccines targeting respiratory and parasitic diseases of global importance.
Collapse
|
6
|
Maria Vasconcelos Queiroz A, Aleksandrovna Yanshina Y, Thays da Silva Rodrigues E, Luciano Neves Santos F, Alejandra Fiorani Celedon P, Maheshwari S, Beatriz Gabelli S, Stephanie Peucelle Rubio C, Durana A, Guérin DMA, Sousa Silva M. Antibodies response induced by recombinant virus-like particles from Triatoma virus and chimeric antigens from Trypanosoma cruzi. Vaccine 2021; 39:4723-4732. [PMID: 34053789 DOI: 10.1016/j.vaccine.2021.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND The infection caused by the protozoan Trypanosoma cruzi affects humans and is called as Chagas disease. Currently, the main measures available to reduce the incidence of this disease are drug treatment and vector control. Traditionally, the development of vaccines occurs mainly through the use of antigenic candidates of the etiologic agent in the form of a vaccine preparation. Virus-like particles (VLPs) are structures analogous to viral capsids composed essentially of structural proteins and are widely used in vaccination protocols because of their immunostimulatory properties. In this context, the objective of this study was to use strategies in a murine immunization model to characterize the immunostimulatory capacity of VLPs from Triatoma virus (TrV-VLPs), analysed in the presence or absence of the aluminium vaccine adjuvant. In parallel, to characterize the immunogenic behaviour of four T. cruzi chimeric recombinant proteins (mix-IBMP) associated with TrV-VLPs or aluminium vaccine adjuvant. METHOD We immunized BALB/c mice once or twice, depending on the strategy, and collected serum samples at 15, 30 and 45 days after the immunization. Subsequently, serum samples from animals immunized with TrV-VLPs were used to determine total IgG, IgG1, IgG2a, IgG2b and IgG3 anti-TrV-VLPs by enzyme-linked immunosorbent assay (ELISA). RESULTS Data obtained demonstrate the ability of TrV-VLPs to preferably induce IgG2b and IgG3 type antibodies in the absence of aluminium adjuvant. In fact, the use of aluminium did not interfere with the total IgG profile of anti-TrV-VLPs. Interestingly, mix-IBMP had a better profile of total IgG, IgG1 and IgG3 subclasses when mixed with TrV-VLPs. CONCLUSION In conclusion, these results suggest the potential of TrV-VLPs as a vaccine adjuvant and the use of T. cruzi chimeric antigens as a rational strategy for the development of vaccines against the experimental model of Chagas disease.
Collapse
Affiliation(s)
- Aline Maria Vasconcelos Queiroz
- Postgraduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Rua Gen, Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil; Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Rua Gen, Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil
| | - Yulia Aleksandrovna Yanshina
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Rua da Juqueira, 100, 1800-166 Lisbon, Portugal
| | - Emily Thays da Silva Rodrigues
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Rua Gen, Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil
| | - Fred Luciano Neves Santos
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Fiocruz, Rua Waldemar Falcão, 121, 40296-710 Salvador, Brazil.
| | | | - Sweta Maheshwari
- School of Medicine, Johns Hopkins University, 725 N Wolfe St, Baltimore, MD 21205, USA
| | | | - Carla Stephanie Peucelle Rubio
- Departamento de Bioquímica y Biología Molecular, Instituto Biofisika, Universidad del País Vasco (UBF, CSIC, UPV-EHU), B° Sarriena S/N, 48940 Leioa, Bizkaia, Spain; Ikosaedrika Biologicals S.L. ZITEK Edificio Rectorado UPV/EHU, B° Sarriena S/N, 48940 Leioa, Vizcaya, Spain
| | - Aritz Durana
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia, B° Sarriena S/N, 48940 Leioa, Vizcaya, Spain
| | - Diego M A Guérin
- Departamento de Bioquímica y Biología Molecular, Instituto Biofisika, Universidad del País Vasco (UBF, CSIC, UPV-EHU), B° Sarriena S/N, 48940 Leioa, Bizkaia, Spain; Ikosaedrika Biologicals S.L. ZITEK Edificio Rectorado UPV/EHU, B° Sarriena S/N, 48940 Leioa, Vizcaya, Spain.
| | - Marcelo Sousa Silva
- Postgraduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Rua Gen, Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil; Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Rua Gen, Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil; Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Rua da Juqueira, 100, 1800-166 Lisbon, Portugal.
| |
Collapse
|
7
|
Gerstweiler L, Bi J, Middelberg APJ. Virus-like particle preparation is improved by control over capsomere-DNA interactions during chromatographic purification. Biotechnol Bioeng 2021; 118:1707-1720. [PMID: 33484156 DOI: 10.1002/bit.27687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 11/09/2022]
Abstract
Expression of viral capsomeres in bacterial systems and subsequent in vitro assembly into virus-like particles is a possible pathway for affordable future vaccines. However, purification is challenging as viral capsomeres show poor binding to chromatography media. In this study, the behavior of capsomeres in unfractionated bacterial lysate was compared with that for purified capsomeres, with or without added microbial DNA, to better understand reasons for poor bioprocess behavior. We show that aggregates or complexes form through the interaction between viral capsomeres and DNA, especially in bacterial lysates rich in contaminating DNA. The formation of these complexes prevents the target protein capsomeres from accessing the pores of chromatography media. We find that protein-DNA interactions can be modulated by controlling the ionic strength of the buffer and that at elevated ionic strengths the protein-DNA complexes dissociate. Capsomeres thus released show enhanced bind-elute behavior on salt-tolerant chromatography media. DNA could therefore be efficiently removed. We believe this is the first report of the use of an optimized salt concentration that dissociates capsomere-DNA complexes yet enables binding to salt-tolerant media. Post purification, assembly experiments indicate that DNA-protein interactions can play a negative role during in vitro assembly, as DNA-protein complexes could not be assembled into virus-like particles, but formed worm-like structures. This study reveals that the control over DNA-protein interaction is a critical consideration during downstream process development for viral vaccines.
Collapse
Affiliation(s)
- Lukas Gerstweiler
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jingxiu Bi
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| | | |
Collapse
|
8
|
Gerstweiler L, Billakanti J, Bi J, Middelberg A. Comparative evaluation of integrated purification pathways for bacterial modular polyomavirus major capsid protein VP1 to produce virus-like particles using high throughput process technologies. J Chromatogr A 2021; 1639:461924. [PMID: 33545579 PMCID: PMC7825977 DOI: 10.1016/j.chroma.2021.461924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/21/2022]
Abstract
Modular virus-like particles and capsomeres are potential vaccine candidates that can induce strong immune responses. There are many described protocols for the purification of microbially-produced viral protein in the literature, however, they suffer from inherent limitations in efficiency, scalability and overall process costs. In this study, we investigated alternative purification pathways to identify and optimise a suitable purification pathway to overcome some of the current challenges. Among the methods, the optimised purification strategy consists of an anion exchange step in flow through mode followed by a multi modal cation exchange step in bind and elute mode. This approach allows an integrated process without any buffer adjustment between the purification steps. The major contaminants like host cell proteins, DNA and aggregates can be efficiently removed by the optimised strategy, without the need for a size exclusion polishing chromatography step, which otherwise could complicate the process scalability and increase overall cost. High throughput process technology studies were conducted to optimise binding and elution conditions for multi modal cation exchanger, Capto™ MMC and strong anion exchanger Capto™ Q. A dynamic binding capacity of 14 mg ml−1 was achieved for Capto™ MMC resin. Samples derived from each purification process were thoroughly characterized by RP-HPLC, SEC-HPLC, SDS-PAGE and LC-ESI-MS/MS Mass Spectrometry analytical methods. Modular polyomavirus major capsid protein could be purified within hours using the optimised process achieving purities above 87% and above 96% with inclusion of an initial precipitation step. Purified capsid protein could be easily assembled in-vitro into well-defined virus-like particles by lowering pH with addition of calcium chloride to the eluate. High throughout studies allowed the screening of a vast design space within weeks, rather than months, and unveiled complicated binding behaviour for CaptoTM MMC.
Collapse
Affiliation(s)
- Lukas Gerstweiler
- The University of Adelaide, School of Chemical Engineering and Advanced Materials, Adelaide, SA 5005, Australia
| | - Jagan Billakanti
- Cytiva, Product and Application Specialist Downstream Design-In ANZ, Suite 547, Level 5, 7 Eden Park Drive, Macquarie Park, NSW 2113, Australia
| | - Jingxiu Bi
- The University of Adelaide, School of Chemical Engineering and Advanced Materials, Adelaide, SA 5005, Australia
| | - Anton Middelberg
- The University of Adelaide, Division of Research and Innovation, Adelaide, SA 5005, Australia.
| |
Collapse
|
9
|
Pattinson DJ, Apte SH, Wibowo N, Rivera-Hernandez T, Groves PL, Middelberg APJ, Doolan DL. Chimeric Virus-Like Particles and Capsomeres Induce Similar CD8 + T Cell Responses but Differ in Capacity to Induce CD4 + T Cell Responses and Antibody Responses. Front Immunol 2020; 11:564627. [PMID: 33133076 PMCID: PMC7550421 DOI: 10.3389/fimmu.2020.564627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/25/2020] [Indexed: 12/01/2022] Open
Abstract
Despite extensive research, the development of an effective malaria vaccine remains elusive. The induction of robust and sustained T cell and antibody response by vaccination is an urgent unmet need. Chimeric virus-like particles (VLPs) are a promising vaccine platform. VLPs are composed of multiple subunit capsomeres which can be rapidly produced in a cost-effective manner, but the ability of capsomeres to induce antigen-specific cellular immune responses has not been thoroughly investigated. Accordingly, we have compared chimeric VLPs and their sub-unit capsomeres for capacity to induce CD8+ and CD4+ T cell and antibody responses. We produced chimeric murine polyomavirus VLPs and capsomeres each incorporating defined CD8+ T cell, CD4+ T cell or B cell repeat epitopes derived from Plasmodium yoelii CSP. VLPs and capsomeres were evaluated using both homologous or heterologous DNA prime/boost immunization regimens for T cell and antibody immunogenicity. Chimeric VLP and capsomere vaccine platforms induced robust CD8+ T cell responses at similar levels which was enhanced by a heterologous DNA prime. The capsomere platform was, however, more efficient at inducing CD4+ T cell responses and less efficient at inducing antigen-specific antibody responses. Our data suggest that capsomeres, which have significant manufacturing advantages over VLPs, should be considered for diseases where a T cell response is the desired outcome.
Collapse
Affiliation(s)
- David J Pattinson
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Simon H Apte
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nani Wibowo
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Tania Rivera-Hernandez
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Penny L Groves
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Anton P J Middelberg
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia.,School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Denise L Doolan
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
10
|
Browne DJ, Brady JL, Waardenberg AJ, Loiseau C, Doolan DL. An Analytically and Diagnostically Sensitive RNA Extraction and RT-qPCR Protocol for Peripheral Blood Mononuclear Cells. Front Immunol 2020; 11:402. [PMID: 32265908 PMCID: PMC7098950 DOI: 10.3389/fimmu.2020.00402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Reliable extraction and sensitive detection of RNA from human peripheral blood mononuclear cells (PBMCs) is critical for a broad spectrum of immunology research and clinical diagnostics. RNA analysis platforms are dependent upon high-quality and high-quantity RNA; however, sensitive detection of specific responses associated with high-quality RNA extractions from human samples with limited PBMCs can be challenging. Furthermore, the comparative sensitivity between RNA quantification and best-practice protein quantification is poorly defined. Therefore, we provide herein a critical evaluation of the wide variety of current generation of RNA-based kits for PBMCs, representative of several strategies designed to maximize sensitivity. We assess these kits with a reverse transcription quantitative PCR (RT-qPCR) assay optimized for both analytically and diagnostically sensitive cell-based RNA-based applications. Specifically, three RNA extraction kits, one post-extraction RNA purification/concentration kit, four SYBR master-mix kits, and four reverse transcription kits were tested. RNA extraction and RT-qPCR reaction efficiency were evaluated with commonly used reference and cytokine genes. Significant variation in RNA expression of reference genes was apparent, and absolute quantification based on cell number was established as an effective RT-qPCR normalization strategy. We defined an optimized RNA extraction and RT-qPCR protocol with an analytical sensitivity capable of single cell RNA detection. The diagnostic sensitivity of this assay was sufficient to show a CD8+ T cell peptide epitope hierarchy with as few as 1 × 104 cells. Finally, we compared our optimized RNA extraction and RT-qPCR protocol with current best-practice immune assays and demonstrated that our assay is a sensitive alternative to protein-based assays for peptide-specific responses, especially with limited PBMCs number. This protocol with high analytical and diagnostic sensitivity has broad applicability for both primary research and clinical practice.
Collapse
Affiliation(s)
- Daniel J Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Jamie L Brady
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Ashley J Waardenberg
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Claire Loiseau
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|