1
|
Ma Y, Li J, Liu Y, Zhao H, Qi X, Sun Y, Chen J, Zhou J, Ma X, Wang L. Identification and exploration of a new M2 macrophage marker MTLN in alveolar echinococcosis. Int Immunopharmacol 2024; 131:111808. [PMID: 38457984 DOI: 10.1016/j.intimp.2024.111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The pathogen of alveolar echinococcosis (AE) is Echinococcus multilocularis (E. multilocularis), which has the characteristics of diffuse infiltration and growth and has a high mortality rate. At present, the role of macrophages in AE infection has attracted more and more attention, but the new biomarkers and polarization mechanisms of macrophages are rarely studied. In this study, CIBERSORT and WGCNA algorithms were used to establish a weighted gene co-expression network, and MTLN was identified as a biological marker of M2-type macrophages, which participated in energy metabolism of macrophages and mediated inflammatory response, but the role of MTLN in AE was not studied. In this study, liver tissue samples from AE patients were collected and immunofluorescence co-localization showed the relationship between MTLN and macrophage distribution. E. multilocularis infected mouse model was established to analyze the expression of MTLN, liver fibrosis, and inflammatory reaction after E. multilocularis infection. The cell experiment simulated the liver microenvironment of E. multilocularis infected human body and analyzed the expression of MTLN by QRT-PCR and western blot in vitro. The data showed that liver fibrosis occurred in AE patients, and MTLN was activated near the focus. After E. multilocularis infected mice, the expression of MTLN increased with time. In the cell experiment, after the antigen of E. multilocularis protoscolex stimulated normal liver cells, the expression of MTLN increased 48 h, at this time, M2 was up-regulated and M1 was down-regulated. Therefore, MTLN may be the key gene to regulate the polarization of M2 macrophages and cause fibrosis.
Collapse
Affiliation(s)
- Yuyu Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Jiajun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Yumei Liu
- Xinjiang Medical University Affiliated Traditional Chinese Medicine Hospital, Xinjiang, China
| | - Hui Zhao
- The First Affiliated Hospital of Xinjiang Medical University, Medical Testing Center, Xinjiang, China
| | - Xinwei Qi
- The First Affiliated Hospital of Xinjiang Medical University, Medical Testing Center, Xinjiang, China
| | - Yuqin Sun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Jiahui Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Jinping Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, China.
| | - Liang Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, China; The Fifth Affiliated Hospital of Xinjiang Medical University, Medical Testing Center, Xinjiang, China.
| |
Collapse
|
2
|
Wang J, Wu Z, Xia M, Salas SS, Ospina JA, Buist-Homan M, Harmsen MC, Moshage H. Extracellular vesicles derived from liver sinusoidal endothelial cells inhibit the activation of hepatic stellate cells and Kupffer cells in vitro. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167020. [PMID: 38244390 DOI: 10.1016/j.bbadis.2024.167020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
Liver sinusoidal endothelial cells (LSECs) play a crucial role in maintaining liver microcirculation and exchange of nutrients in the liver and are thought to be involved in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). The activation of hepatic stellate cells (HSCs) and Kupffer cells (KCs) has been considered to be responsible for the onset of liver fibrosis and the aggravation of liver injury. However, the paracrine regulatory effects of LSECs in the development of MASLD, in particular the role of LSEC-derived extracellular vesicles (EVs) remains unclear. Therefore, the aim of the present study was to investigate the influence of LSEC-derived EVs on HSCs and KCs. Primary rat LSECs, HSCs and KCs were isolated from male Wistar rats. LSEC-derived EVs were isolated from conditioned medium by ultracentrifugation and analyzed by nanoparticle tracking analysis, and expression of specific markers. LSEC-derived EVs reduced the expression of activation markers in activated HSCs but did not affect quiescent HSCs. Also, LSEC-derived EVs suppressed proliferation of activated HSCs activation, as assessed by Xcelligence and BrdU assay. LSEC-derived EVs also increased the expression of inflammatory genes in HSCs that normally are lowly expression during their activation. In contrast, EVs decreased the expression of inflammatory genes in activated KCs. In summary, our results suggest that LSEC-derived EVs may attenuate the fibrogenic phenotype of activated HSCs and the inflammatory phenotype of KCs. Our results show promise for LSEC-derived EVs as therapeutic moieties to treat MASLD. In addition, these EVs might prove of diagnostic value.
Collapse
Affiliation(s)
- Junyu Wang
- University Medical Center Groningen, University of Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands
| | - Zongmei Wu
- University Medical Center Groningen, University of Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands
| | - Mengmeng Xia
- University Medical Center Groningen, University of Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands
| | - Sandra Serna Salas
- University Medical Center Groningen, University of Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands
| | - Johanna Arroyave Ospina
- University Medical Center Groningen, University of Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands
| | - Manon Buist-Homan
- University Medical Center Groningen, University of Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands; University Medical Center Groningen, University of Groningen, Department of Laboratory Medicine, Groningen, the Netherlands
| | - Martin C Harmsen
- University Medical Center Groningen, University of Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands; University Medical Center Groningen, University of Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Han Moshage
- University Medical Center Groningen, University of Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands; University Medical Center Groningen, University of Groningen, Department of Laboratory Medicine, Groningen, the Netherlands.
| |
Collapse
|
3
|
Li B, Wang L, Qi X, Liu Y, Li J, Lv J, Zhou X, Cai X, Shan J, Ma X. NOTCH
signaling inhibition after
DAPT
treatment exacerbates alveolar echinococcosis hepatic fibrosis by blocking
M1
and enhancing
M2
polarization. FASEB J 2023; 37:e22901. [PMID: 37002884 DOI: 10.1096/fj.202202033r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Alveolar echinococcosis (AE) is a lethal helminthic liver disease caused by persistent infection with Echinococcus multilocularis (E. multilocularis). Although more and more attention has been paid to the macrophages in E. multilocularis infection, the mechanism of macrophage polarization, a critical player in liver immunity, is seldom studied. NOTCH signaling is involved in cell survival and macrophage-mediated inflammation, but the role of NOTCH signaling in AE has been equally elusive. In this study, liver tissue samples from AE patients were collected and an E. multilocularis infected mouse model with or without blocking NOTCH signaling was established to analyze the NOTCH signaling, fibrotic and inflammatory response of the liver after E. multilocularis infection. Changes in polarization and origin of hepatic macrophages were analyzed by flow cytometry. In vitro qRT-PCR and Western blot assays were performed to analyze key receptors and ligands in NOTCH signaling. Our data demonstrated that hepatic fibrosis develops after AE, and the overall blockade of NOTCH signaling caused by DAPT treatment exacerbates the levels of hepatic fibrosis and alters the polarization and origin of hepatic macrophages. Blocking NOTCH signaling in macrophages after E. multilocularis infection downregulates M1 and upregulates M2 expression. The downregulation of NTCH3 and DLL-3 in the NOTCH signaling pathway is significant. Therefore, NOTCH3/DLL3 may be the key pathway in NOTCH signaling regulating macrophage polarization affecting fibrosis caused by AE.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center Tumor Hospital Affiliated to Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| | - Liang Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center Tumor Hospital Affiliated to Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
- First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| | - Xinwei Qi
- First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| | - Yumei Liu
- Children's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang 830011 P.R. China
| | - Jiajun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center Tumor Hospital Affiliated to Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| | - Jie Lv
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center Tumor Hospital Affiliated to Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| | - Xuan Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center Tumor Hospital Affiliated to Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| | - Xuanlin Cai
- First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| | - Jiaoyu Shan
- College of Basic Medicine of Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center Tumor Hospital Affiliated to Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
- First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| |
Collapse
|
4
|
Chen CS, Zhang YG, Wang HJ, Fan HN. Effect and mechanism of reactive oxygen species-mediated NOD-like receptor family pyrin domain-containing 3 inflammasome activation in hepatic alveolar echinococcosis. World J Gastroenterol 2023; 29:2153-2171. [PMID: 37122606 PMCID: PMC10130966 DOI: 10.3748/wjg.v29.i14.2153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 03/16/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a significant component of the innate immune system that plays a vital role in the development of various parasitic diseases. However, its role in hepatic alveolar echinococcosis (HAE) remains unclear.
AIM To investigate the NLRP3 inflammasome and its mechanism of activation in HAE.
METHODS We assessed the expression of NLRP3, caspase-1, interleukin (IL)-1β, and IL-18 in the marginal zone and corresponding normal liver of 60 patients with HAE. A rat model of HAE was employed to investigate the role of the NLRP3 inflammasome in the marginal zone of HAE. Transwell experiments were conducted to investigate the effect of Echinococcus multilocularis (E. multilocularis) in stimulating Kupffer cells and hepatocytes. Furthermore, immunohistochemistry, Western blotting, and enzyme-linked immunosorbent assay were used to evaluate NLRP3, caspase-1, IL-1β, and IL-18 expression; flow cytometry was used to detect apoptosis and reactive oxygen species (ROS).
RESULTS NLRP3 inflammasome activation was significantly associated with ROS. Inhibition of ROS production decreased NLRP3-caspase-1-IL-1β pathway activation and mitigated hepatocyte damage and inflammation.
CONCLUSION E. multilocularis induces hepatocyte damage and inflammation by activating the ROS-mediated NLRP3-caspase-1-IL-1β pathway in Kupffer cells, indicating that ROS may serve as a potential target for the treatment of HAE.
Collapse
Affiliation(s)
- Cai-Song Chen
- Research Center for High Altitude Medicine of Qinghai University, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Yao-Gang Zhang
- Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Hai-Jiu Wang
- Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Hai-Ning Fan
- Department of Hepatobiliary and Pancreatic Surgery, Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| |
Collapse
|
5
|
Immunomodulating Hydrogels as Stealth Platform for Drug Delivery Applications. Pharmaceutics 2022; 14:pharmaceutics14102244. [PMID: 36297679 PMCID: PMC9610165 DOI: 10.3390/pharmaceutics14102244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Non-targeted persistent immune activation or suppression by different drug delivery platforms can cause adverse and chronic physiological effects including cancer and arthritis. Therefore, non-toxic materials that do not trigger an immunogenic response during delivery are crucial for safe and effective in vivo treatment. Hydrogels are excellent candidates that can be engineered to control immune responses by modulating biomolecule release/adsorption, improving regeneration of lymphoid tissues, and enhancing function during antigen presentation. This review discusses the aspects of hydrogel-based systems used as drug delivery platforms for various diseases. A detailed investigation on different immunomodulation strategies for various delivery options and deliberate upon the outlook of such drug delivery platforms are conducted.
Collapse
|
6
|
Yang N, Ma W, Ke Y, Liu H, Chu J, Sun L, Lü G, Bi X, Lin R. Transplantation of adipose-derived stem cells ameliorates Echinococcus multilocularis-induced liver fibrosis in mice. PLoS Negl Trop Dis 2022; 16:e0010175. [PMID: 35100287 PMCID: PMC8830670 DOI: 10.1371/journal.pntd.0010175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/10/2022] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Alveolar echinococcosis (AE) can cause severe liver fibrosis and could be fatal if left untreated. Currently, there are no effective therapeutic options for AE-induced liver fibrosis. In view of the therapeutic potential of adipose-derived stem cells (ADSCs), we investigated whether ADSCs transplantation has the ability to control or reverse fibrosis progression in the liver of Echinococcus multilocularis (E. multilocularis) infected mice. METHODOLOGY/PRINCIPAL FINDINGS C57BL/6 mice infected with E. multilocularis through portal vein inoculation were intravenously injected with ADSCs isolated from inguinal adipose tissues of 6-8 weeks old mice. Histopathological analysis including heamatoxylin & eosin staining as well as Masson's trichrome staining, and Sirius red staining were performed to access the degree of liver fibrosis. Histopathological examination 30 days after ADSCs transplantation revealed that ADSCs significantly decreased the degree of liver fibrosis in E. multilocularis infected mice by inhibiting the expressions of α-SMA and type 1 collagen deposition. In addition, compared to the non-transplanted group, ADSCs transplantation reduced fibrotic areas in E. multilocularis infected mice. We also found that ADSCs transplantation significantly down-regulated TGF-β1 and TGF-βR expressions, while up-regulating Smad7 expression in the TGF-β/Smad signaling pathway. CONCLUSIONS ADSCs can alleviate Echinococcus multilocularis infection-induced liver fibrosis by modulating the activity level of the TGF-β/Smad7 signaling pathway and provide a potential therapeutic approach for E. multilocularis-induced fibrosis.
Collapse
Affiliation(s)
- Ning Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wenmei Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Pathology department, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ying Ke
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hui Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jin Chu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Li Sun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Guodong Lü
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaojuan Bi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Renyong Lin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
7
|
Aini A, Yimingjiang M, Yasen A, Ran B, Jiang T, Li X, Wang J, Abulizi A, Li Z, Shao Y, Aji T, Wen H. Quantitative evaluation of range and metabolic activity of hepatic alveolar echinococcosis lesion microenvironment using PET/CT and multi-site sampling method. BMC Infect Dis 2021; 21:702. [PMID: 34301188 PMCID: PMC8299608 DOI: 10.1186/s12879-021-06366-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Background Alveolar echinococcosis (AE) lesion microenvironment (LME) is crucial site where parasite-host interactions happen and of great significance during surgery and obtaining liver samples for basic research. However, little is known about quantification of LME range and its’ metabolic activity regarding different lesion characteristics. Methods A prospective and retrospective analysis of LME from surgical AE patients was performed. Patients (n = 75) received abdominal computed tomography (CT) and position emission tomography/computed tomography using 18F-fluodeoxyglucose (18F-FDG-PET/CT) within 1 week prior to surgery. Semiquantitatively, calcification was clustered with 0%, < 50% and ≥ 50% degrees at lesion periphery; liquefaction was clustered with 0%, < 50%, 50 ~ 75%, ≥75% degrees at lesion center using volumetric ratio. Tumor to background ratio (TBR) of 18F-FDG standard uptake value (SUV, n = 75) was calculated, and range of 18F-FDG uptake area was measured; Multi-site sampling method (MSS, n = 35) was introduced to obtain histological slides to evaluate immune cell infiltrative ranges. Results Altogether six major lesion groups have been identified (A: 0% calcified, 0% liquefied; B: ≥50% calcified, 0% liquefied; C: < 50% calcified, < 50% liquefied; D: ≥50% calcified, < 50% liquefied; E: < 50% calcified, 50 ~ 75% liquefied; F: ≥50% calcified, ≥75% liquefied). Statistically, TBR values respectively were 5.1 ± 1.9, 2.7 ± 1.2, 4.2 ± 1.2, 2.7 ± 0.7, 4.6 ± 1.2, 2.9 ± 1.1 in groups A ~ F, and comparisons showed A > B, A > D, A > F, E > B, E > D, E > F, C > B, C > D, C > F (P < 0.05); LME ranges indicated by PET/CT respectively were 14.9 ± 3.9, 10.6 ± 1.5, 12.3 ± 1.1, 7.8 ± 1.6, 11.1 ± 2.3, 7.0 ± 0.4 mm in groups A ~ F, and comparisons showed A > B, A > D, A > F, A > E, C > B, C > D, C > F, E > D, E > F, B > D, B > F (P < 0.05); LME ranges indicated by MSS respectively were 17.9 ± 4.9, 13.0 ± 2.7, 11.9 ± 2.6, 6.0 ± 2.2, 11.0 ± 4.1, 6.0 ± 2.2 mm in groups A ~ F, and comparisons showed A > C, A > D, A > F, B > D, B > F, C > D, C > F (P < 0.05). Generally, less calcifications indicated higher TBR values and wider LME ranges; and, severer liquefactions indicated smaller LME ranges. Additionally, patients with previous medication history had lower TBR values. Conclusions PET/CT and MSS method showed distinct TBRs and LME ranges for different calcifications and liquefactions. This study would be able to provide references for both surgical resections of lesions and more accurate sample acquisitions for basic research targeted to immunology. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06366-3.
Collapse
Affiliation(s)
- Abudusalamu Aini
- Hepatobiliary and Echinococcosis Surgery Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Uyghur Autonomous Region Clinical Research Center for Echinococcosis and Hepatobiliary Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Management of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Maiweilidan Yimingjiang
- Department of Pathology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Aimaiti Yasen
- Hepatobiliary and Echinococcosis Surgery Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Uyghur Autonomous Region Clinical Research Center for Echinococcosis and Hepatobiliary Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Management of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Bo Ran
- Hepatobiliary and Echinococcosis Surgery Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Uyghur Autonomous Region Clinical Research Center for Echinococcosis and Hepatobiliary Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tiemin Jiang
- Hepatobiliary and Echinococcosis Surgery Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Uyghur Autonomous Region Clinical Research Center for Echinococcosis and Hepatobiliary Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaohong Li
- Department of Nuclear Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jian Wang
- Radiology Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Abuduaini Abulizi
- Hepatobiliary and Echinococcosis Surgery Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Uyghur Autonomous Region Clinical Research Center for Echinococcosis and Hepatobiliary Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhide Li
- Hepatobiliary and Echinococcosis Surgery Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Uyghur Autonomous Region Clinical Research Center for Echinococcosis and Hepatobiliary Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yingmei Shao
- Hepatobiliary and Echinococcosis Surgery Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Uyghur Autonomous Region Clinical Research Center for Echinococcosis and Hepatobiliary Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,WHO Collaboration Center on Prevention and Management of Echinococcosis, Clinical Medical Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tuerganaili Aji
- Hepatobiliary and Echinococcosis Surgery Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China. .,Xinjiang Uyghur Autonomous Region Clinical Research Center for Echinococcosis and Hepatobiliary Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China. .,Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China. .,WHO Collaboration Center on Prevention and Management of Echinococcosis, Clinical Medical Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Management of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China. .,WHO Collaboration Center on Prevention and Management of Echinococcosis, Clinical Medical Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
8
|
Wang H, Huang M, Bei W, Yang Y, Song L, Zhang D, Zhan W, Zhang Y, Chen X, Wang W, Wang L, Guo J. FTZ attenuates liver steatosis and fibrosis in the minipigs with type 2 diabetes by regulating the AMPK signaling pathway. Biomed Pharmacother 2021; 138:111532. [PMID: 34311531 DOI: 10.1016/j.biopha.2021.111532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/30/2022] Open
Abstract
Fufang Zhenzhu Tiaozhi formula (FTZ), a preparation of Chinese herbal medicine, has various pharmacological properties, such as hypoglycemic, hypolipidemic, anticoagulant, and anti-inflammatory activities. Hepatocyte apoptosis is a marker of nonalcoholic steatohepatitis (NASH) and contributes to liver injury, fibrosis, and inflammation. Given the multiple effects of FTZ, we investigated whether FTZ can be a therapeutic agent for NASH and its mechanism. In the present study, we observed that FTZ treatment had an obviously favorable influence on hepatic steatosis and fibrosis in the histopathologic features of type 2 diabetes mellitus (T2DM) and coronary heart disease (CHD) with NASH minipigs. In addition, immunohistochemical analysis showed increased expression of the fibrotic marker α-smooth muscle actin (α-SMA), and a TUNEL assay revealed increased apoptotic positive hepatic cells in the liver tissues of the model group. Furthermore, FTZ administration reduced the increased expression of α-SMA, and FTZ inhibited apoptosis by affecting Bcl-2/Bax and cleaved caspase-3 expression. Mechanistically, our data suggested that FTZ treatment attenuated hepatic steatosis and fibrosis via the adenosine monophosphate-activated protein kinase (AMPK) pathway. In vitro studies showed that FTZ also attenuated intracellular lipid accumulation in HepG2 cells exposed to palmitic acid (PA) and oleic acid (OA). FTZ upregulated the expression levels of P-AMPK and BCL-2 and downregulated BAX. The changes induced by FTZ were reversed by Compound C, an inhibitor of AMPK. In conclusion, FTZ attenuated NASH by ameliorating steatosis and hepatocyte apoptosis, which is attributable to the regulation of the AMPK pathway.
Collapse
Affiliation(s)
- Hong Wang
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Minyi Huang
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Weijian Bei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Yiqi Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China; Guangdong TCM Key Laboratory against Metabolic Diseases, China
| | - Lixia Song
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Dongxing Zhang
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Wenjing Zhan
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Yuzhen Zhang
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Xu Chen
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Weixuan Wang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China; Guangdong TCM Key Laboratory against Metabolic Diseases, China
| | - Lexun Wang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China; Guangdong TCM Key Laboratory against Metabolic Diseases, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China; Guangdong TCM Key Laboratory against Metabolic Diseases, China.
| |
Collapse
|
9
|
Shang X, Wang L, Liu Y, Liu X, Lv J, Zhou X, Wang H, Nazierhan S, Wang J, Ma X. Diagnostic value of CXCR3 and its ligands in spinal tuberculosis. Exp Ther Med 2020; 21:73. [PMID: 33365073 PMCID: PMC7716639 DOI: 10.3892/etm.2020.9505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/18/2020] [Indexed: 01/13/2023] Open
Abstract
The present study aimed to investigate whether C-X-C motif chemokine receptor 3 (CXCR3) and its ligands may aid in diagnosing spinal tuberculosis (ST). A total of 36 patients with ST and 20 healthy controls were enrolled in the present study. The morphology of tuberculous granuloma in spinal tissue was observed by hematoxylin and eosin staining. The presence and distribution of acid-fast bacilli (AFB) were observed by Ziehl-Neelsen (ZN) staining. The protein expression of Ag85B, IFN-γ, and CXCR3 and its ligands (CXCL9 and CXCL10) were detected by immunohistochemistry. The levels of IFN-γ, CXCR3, CXCL9 and CXCL10 in peripheral blood of patients with ST and healthy controls were detected by reverse transcription-quantitative polymerase chain reaction and ELISA. Typical tuberculous granuloma was observed in the ST close tissue. AFB was observed by ZN staining. Positive expression of Ag85B was found in the surrounding caseous necrotic tissue of the tuberculous granuloma. IFN-γ, CXCR3, CXCL9 and CXCL10 were expressed in the tissue surrounding the tuberculous granuloma and their expression levels were markedly higher than those in the distant tissues. The levels of IFN-γ, CXCR3, CXCL9 and CXCL10 in peripheral blood of patients with ST were significantly higher than those in the healthy controls. Receiver operating characteristic curve analysis demonstrated that IFN-γ, CXCR3 and CXCL10 were more reliable diagnostic markers in terms of sensitivity and specificity. IFN-γ, CXCR3, CXCL9 and CXCL10 were highly expressed in the lesion tissue and peripheral blood samples of patients with ST, and IFN-γ, CXCR3 and its ligands aided in diagnosing ST.
Collapse
Affiliation(s)
- Xiaoqian Shang
- Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Liang Wang
- Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yumei Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Xuemei Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China.,Department of Respiratory Medicine, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan Road, Urumqi, Xinjiang 830011, P.R. China
| | - Jie Lv
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Xuan Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Hao Wang
- Department of Spinal Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830011, P.R. China
| | - Shaxika Nazierhan
- Department of Spinal Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830011, P.R. China
| | - Jing Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China.,Department of Respiratory Medicine, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan Road, Urumqi, Xinjiang 830011, P.R. China
| | - Xiumin Ma
- Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|