1
|
Esfandiari Z, Vakili B, Ahangarzadeh S, Esfahani SN, Shoaei P. Impact of Selenium Nanoparticle-Enriched Lactobacilli Feeding Against Escherichia coli O157:H7 Infection of BALB/c Mice. Probiotics Antimicrob Proteins 2024; 16:784-795. [PMID: 37145299 DOI: 10.1007/s12602-023-10081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
The effectiveness of selenium nanoparticle (SeNP)-enriched Lactiplantibacillus plantarum and Lactobacillus acidophilus was studied against Shiga toxin-producing Escherichia coli O157:H7 infection on the intestinal fragments and kidney tissue of BALB/c mice. Gut microbiota-targeted bacteria and E. coli O157:H7 counts were obtained by qPCR and PCR. Histology of ileum, colon, and kidney tissues and Stx secretions were analyzed until one-week post-infection. Mice fed with SeNP Lpb. plantarum in the preinfection feeding groups have lower E. coli O157:H7 counts and lower intestinal damage than those in the infected group. The lowest mean fecal probiotic counts were in the L. acidophilus group (7.61 log 10). In pretreatment groups of SeNP L. acidophilus and L. acidophilus, the mean counts of bacteria decreased to 104 CFU/g by day 7. The lowest Stx copy number was demonstrated in SeNP Lpb. plantarum feeding groups' day 7 (P < 0.05). Feeding groups with SeNP Lpb. plantarum had significantly higher members of Lactobacilli in their fecal microbiota than the control group on day 7. It was clarified that Se-enriched Lpb. plantarum and L. acidophilus can be useful as a method of preventing STEC infections. The viability of STEC infection exposure to selenium-enriched Lactobacillus spp. was decreased more than for non-Se-enriched Lactobacillus spp.
Collapse
Affiliation(s)
- Zahra Esfandiari
- Department of Food Science and Technology, Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahareh Vakili
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzah Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Salar Nasr Esfahani
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Shoaei
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Kalalah AA, Koenig SSK, Feng P, Bosilevac JM, Bono JL, Eppinger M. Pathogenomes of Shiga Toxin Positive and Negative Escherichia coli O157:H7 Strains TT12A and TT12B: Comprehensive Phylogenomic Analysis Using Closed Genomes. Microorganisms 2024; 12:699. [PMID: 38674643 PMCID: PMC11052207 DOI: 10.3390/microorganisms12040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli are zoonotic pathogens that cause food-borne human disease. Among these, the O157:H7 serotype has evolved from an enteropathogenic O55:H7 ancestor through the displacement of the somatic gene cluster and recurrent toxigenic conversion by Shiga toxin-converting bacteriophages. However, atypical strains that lack the Shiga toxin, the characteristic virulence hallmark, are circulating in this lineage. For this study, we analyzed the pathogenome and virulence inventories of the stx+ strain, TT12A, isolated from a patient with hemorrhagic colitis, and its respective co-isolated stx- strain, TT12B. Sequencing the genomes to closure proved critical to the cataloguing of subtle strain differentiating sequence and structural polymorphisms at a high-level of phylogenetic accuracy and resolution. Phylogenomic profiling revealed SNP and MLST profiles similar to the near clonal outbreak isolates. Their prophage inventories, however, were notably different. The attenuated atypical non-shigatoxigenic status of TT12B is explained by the absence of both the ΦStx1a- and ΦStx2a-prophages carried by TT12A, and we also recorded further alterations in the non-Stx prophage complement. Phenotypic characterization indicated that culture growth was directly impacted by the strains' distinct lytic phage complement. Altogether, our phylogenomic and phenotypic analyses show that these intimately related isogenic strains are on divergent Stx(+/stx-) evolutionary paths.
Collapse
Affiliation(s)
- Anwar A. Kalalah
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Peter Feng
- U.S. Food and Drug Administration (FDA), College Park, MD 20740, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - James L. Bono
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| |
Collapse
|
3
|
Kalalah AA, Koenig SSK, Bono JL, Bosilevac JM, Eppinger M. Pathogenomes and virulence profiles of representative big six non-O157 serogroup Shiga toxin-producing Escherichia coli. Front Microbiol 2024; 15:1364026. [PMID: 38562479 PMCID: PMC10982417 DOI: 10.3389/fmicb.2024.1364026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) of non-O157:H7 serotypes are responsible for global and widespread human food-borne disease. Among these serogroups, O26, O45, O103, O111, O121, and O145 account for the majority of clinical infections and are colloquially referred to as the "Big Six." The "Big Six" strain panel we sequenced and analyzed in this study are reference type cultures comprised of six strains representing each of the non-O157 STEC serogroups curated and distributed by the American Type Culture Collection (ATCC) as a resource to the research community under panel number ATCC MP-9. The application of long- and short-read hybrid sequencing yielded closed chromosomes and a total of 14 plasmids of diverse functions. Through high-resolution comparative phylogenomics, we cataloged the shared and strain-specific virulence and resistance gene content and established the close relationship of serogroup O26 and O103 strains featuring flagellar H-type 11. Virulence phenotyping revealed statistically significant differences in the Stx-production capabilities that we found to be correlated to the strain's individual stx-status. Among the carried Stx1a, Stx2a, and Stx2d phages, the Stx2a phage is by far the most responsive upon RecA-mediated phage mobilization, and in consequence, stx2a + isolates produced the highest-level of toxin in this panel. The availability of high-quality closed genomes for this "Big Six" reference set, including carried plasmids, along with the recorded genomic virulence profiles and Stx-production phenotypes will provide a valuable foundation to further explore the plasticity in evolutionary trajectories in these emerging non-O157 STEC lineages, which are major culprits of human food-borne disease.
Collapse
Affiliation(s)
- Anwar A. Kalalah
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - James L. Bono
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| |
Collapse
|
4
|
Lindsey RL, Prasad A, Feldgarden M, Gonzalez-Escalona N, Kapsak C, Klimke W, Melton-Celsa A, Smith P, Souvorov A, Truong J, Scheutz F. Identification and Characterization of ten Escherichia coli Strains Encoding Novel Shiga Toxin 2 Subtypes, Stx2n as Well as Stx2j, Stx2m, and Stx2o, in the United States. Microorganisms 2023; 11:2561. [PMID: 37894219 PMCID: PMC10608928 DOI: 10.3390/microorganisms11102561] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The sharing of genome sequences in online data repositories allows for large scale analyses of specific genes or gene families. This can result in the detection of novel gene subtypes as well as the development of improved detection methods. Here, we used publicly available WGS data to detect a novel Stx subtype, Stx2n in two clinical E. coli strains isolated in the USA. During this process, additional Stx2 subtypes were detected; six Stx2j, one Stx2m strain, and one Stx2o, were all analyzed for variability from the originally described subtypes. Complete genome sequences were assembled from short- or long-read sequencing and analyzed for serotype, and ST types. The WGS data from Stx2n- and Stx2o-producing STEC strains were further analyzed for virulence genes pro-phage analysis and phage insertion sites. Nucleotide and amino acid maximum parsimony trees showed expected clustering of the previously described subtypes and a clear separation of the novel Stx2n subtype. WGS data were used to design OMNI PCR primers for the detection of all known stx1 (283 bp amplicon), stx2 (400 bp amplicon), intimin encoded by eae (221 bp amplicon), and stx2f (438 bp amplicon) subtypes. These primers were tested in three different laboratories, using standard reference strains. An analysis of the complete genome sequence showed variability in serogroup, virulence genes, and ST type, and Stx2 pro-phages showed variability in size, gene composition, and phage insertion sites. The strains with Stx2j, Stx2m, Stx2n, and Stx2o showed toxicity to Vero cells. Stx2j carrying strain, 2012C-4221, was induced when grown with sub-inhibitory concentrations of ciprofloxacin, and toxicity was detected. Taken together, these data highlight the need to reinforce genomic surveillance to identify the emergence of potential new Stx2 or Stx1 variants. The importance of this surveillance has a paramount impact on public health. Per our description in this study, we suggest that 2017C-4317 be designated as the Stx2n type-strain.
Collapse
Affiliation(s)
- Rebecca L. Lindsey
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (C.K.); (P.S.)
| | - Arjun Prasad
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (A.P.); (M.F.); (W.K.); (A.S.)
| | - Michael Feldgarden
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (A.P.); (M.F.); (W.K.); (A.S.)
| | - Narjol Gonzalez-Escalona
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA;
| | - Curtis Kapsak
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (C.K.); (P.S.)
| | - William Klimke
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (A.P.); (M.F.); (W.K.); (A.S.)
| | - Angela Melton-Celsa
- Department of Microbiology and Immunology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20184, USA;
| | - Peyton Smith
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (C.K.); (P.S.)
| | - Alexandre Souvorov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (A.P.); (M.F.); (W.K.); (A.S.)
| | - Jenny Truong
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
| | - Flemming Scheutz
- The International Escherichia and Klebsiella Centre, Statens Serum Institut, 2300 Copenhagen, Denmark;
| |
Collapse
|
5
|
Atitkar RR, Melton-Celsa AR. Differences in the Shiga Toxin (Stx) 2a Phage Regulatory Switch Region Influence Stx2 Localization and Virulence of Stx-Producing Escherichia coli in Mice. Microorganisms 2023; 11:1925. [PMID: 37630485 PMCID: PMC10458857 DOI: 10.3390/microorganisms11081925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) is a major cause of foodborne illness globally, and infection with serotype O157:H7 is associated with increased risk of hospitalization and death in the U.S. The Stxs are encoded on a temperate bacteriophage (stx-phage), and phage induction leads to Stx expression; subtype Stx2a in particular is associated with more severe disease. Our earlier studies showed significant levels of RecA-independent Stx2 production by STEC O157:H7 strain JH2010 (stx2astx2c), even though activated RecA is the canonical trigger for stx-phage induction. This study aimed to further compare and contrast RecA-independent toxin production in Stx2-producing clinical isolates. Deletion of recA in JH2010 resulted in higher in vitro supernatant cytotoxicity compared to that from JH2016ΔrecA, and the addition of the chelator ethylenediaminetetraacetic acid (EDTA) and various metal cations to the growth medium exacerbated the difference in cytotoxicity exhibited by the two deletion strains. Both the wild-type and ΔrecA deletion strains exhibited differential cytotoxicity in the feces of infected, streptomycin (Str)-treated mice. Comparison of the stx2a-phage predicted protein sequences from JH2010 and JH2016 revealed low amino acid identity of key phage regulatory proteins that are involved in RecA-mediated stx-phage induction. Additionally, other STEC isolates containing JH2010-like and JH2016-like stx2a-phage sequences led to similar Stx2 localization, as demonstrated by JH2010ΔrecA and JH2016ΔrecA, respectively. Deletion of the stx2a-phage regulatory region in the wild-type strains prevented the differential localization of Stx2 into the culture supernatant, a finding that suggests that the stx2a-phage regulatory region is involved in the differential ΔrecA phenotypes exhibited by the two strains. We hypothesize that the amino acid differences between the JH2010 and JH2016 phage repressor proteins (CIs) lead to structural differences that are responsible for differential interaction with RecA. Overall, we discovered that non-homologous stx2a-phage regulatory proteins differentially influence RecA-independent, and possibly RecA-dependent, Stx2 production. These findings emphasize the importance of studying non-homologous regulatory elements among stx2-phages and their influence on Stx2 production and virulence of STEC isolates.
Collapse
Affiliation(s)
- Rama R. Atitkar
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Angela R. Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
6
|
Atitkar RR, Hauser JR, Melton-Celsa AR. Shiga Toxin (Stx) Phage-Encoded Lytic Genes Are Not Required for the Mouse Virulence of O157:H7 Escherichia coli Stx2-Producing Clinical Isolates. Microbiol Spectr 2023; 11:e0037223. [PMID: 37022201 PMCID: PMC10269767 DOI: 10.1128/spectrum.00372-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) is a major cause of foodborne diarrheal illness in the United States and globally, and serotype O157:H7 is frequently associated with STEC outbreaks and sporadic cases in the United States. Severe systemic diseases associated with STEC are mediated by Stx types, particularly subtype Stx2a, encoded on inducible bacteriophages. We previously identified two STEC O157:H7 clinical isolates, JH2010 and JH2012, that exhibit a large difference in virulence in a streptomycin (Str)-treated mouse model. In this study, we aimed to identify a genetic basis for the difference in virulence between those strains. Comparison of the stx2a phage sequences showed that JH2012 lacks the lytic genes S and R on the phage genome. We also demonstrated that compared to JH2012 cultures, cultures of JH2010 released more Stx2 into the supernatant and were more sensitive to bacterial lysis during growth with ciprofloxacin (Cip), an inducer of stx phages. We therefore generated an stx2a phage SR deletion mutant strain of JH2010 to determine if those genes were responsible for the high virulence of that strain. We found that deletion of the SR genes from the stx2a phage in JH2010, and another O157:H7 strain, JH2016, resulted in increased cellular retention of Stx2, but there was no difference in virulence compared to the wild-type strains. Our results indicate that the stx2a phage SR genes are involved in Stx2 localization and phage-mediated cell lysis in vitro but that they are not required in wild-type STEC strains for virulence in a mouse model. IMPORTANCE The release of Stx from STEC has been thought to be tied to phage-mediated lysis of the host bacterial cell. In this study, we found that the stx2a phage lytic genes are not required for the virulence of pathogenic O157:H7 clinical isolates in a murine model of STEC infection or for release of Stx2a into the supernatant of bacterial cultures. These results point to an alternate mechanism for Stx2a release from STEC strains.
Collapse
Affiliation(s)
- R. R. Atitkar
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - J. R. Hauser
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - A. R. Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Bova RA, Lamont AC, Picou TJ, Ho VB, Gilchrist KH, Melton-Celsa AR. Shiga Toxin (Stx) Type 1a and Stx2a Translocate through a Three-Layer Intestinal Model. Toxins (Basel) 2023; 15:toxins15030207. [PMID: 36977098 PMCID: PMC10054274 DOI: 10.3390/toxins15030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Shiga toxins (Stxs) produced by ingested E. coli can induce hemolytic uremic syndrome after crossing the intact intestinal barrier, entering the bloodstream, and targeting endothelial cells in the kidney. The method(s) by which the toxins reach the bloodstream are not fully defined. Here, we used two polarized cell models to evaluate Stx translocation: (i) a single-layer primary colonic epithelial cell model and (ii) a three-cell-layer model with colonic epithelial cells, myofibroblasts, and colonic endothelial cells. We traced the movement of Stx types 1a and 2a across the barrier models by measuring the toxicity of apical and basolateral media on Vero cells. We found that Stx1a and Stx2a crossed both models in either direction. However, approximately 10-fold more Stx translocated in the three-layer model as compared to the single-layer model. Overall, the percentage of toxin that translocated was about 0.01% in the epithelial-cell-only model but up to 0.09% in the three-cell-layer model. In both models, approximately 3- to 4-fold more Stx2a translocated than Stx1a. Infection of the three-cell-layer model with Stx-producing Escherichia coli (STEC) strains showed that serotype O157:H7 STEC reduced barrier function in the model and that the damage was not dependent on the presence of the eae gene. Infection of the three-layer model with O26:H11 STEC strain TW08571 (Stx1a+ and Stx2a+), however, allowed translocation of modest amounts of Stx without reducing barrier function. Deletion of stx2a from TW08571 or the use of anti-Stx1 antibody prevented translocation of toxin. Our results suggest that single-cell models may underestimate the amount of Stx translocation and that the more biomimetic three-layer model is suited for Stx translocation inhibitor studies.
Collapse
Affiliation(s)
- Rebecca A. Bova
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Center for Biotechnology (4DBio3), Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD 20814, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Andrew C. Lamont
- Center for Biotechnology (4DBio3), Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD 20814, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Theodore J. Picou
- Center for Biotechnology (4DBio3), Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD 20814, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Vincent B. Ho
- Center for Biotechnology (4DBio3), Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD 20814, USA
| | - Kristin H. Gilchrist
- Center for Biotechnology (4DBio3), Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD 20814, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Angela R. Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Correspondence:
| |
Collapse
|
8
|
Miyata T, Taniguchi I, Nakamura K, Gotoh Y, Yoshimura D, Itoh T, Hirai S, Yokoyama E, Ohnishi M, Iyoda S, Ogura Y, Hayashi T. Alteration of a Shiga toxin-encoding phage associated with a change in toxin production level and disease severity in Escherichia coli. Microb Genom 2023; 9:mgen000935. [PMID: 36821793 PMCID: PMC9997748 DOI: 10.1099/mgen.0.000935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/21/2022] [Indexed: 02/25/2023] Open
Abstract
Among the nine clades of Shiga toxin (Stx)-producing Escherichia coli O157:H7, clade 8 is thought to be highly pathogenic, as it causes severe disease more often than other clades. Two subclades have been proposed, but there are conflicting reports on intersubclade differences in Stx2 levels, although Stx2 production is a risk factor for severe disease development. The global population structure of clade 8 has also yet to be fully elucidated. Here, we present genome analyses of a global clade 8 strain set (n =510), including 147 Japanese strains sequenced in this study. The complete genome sequences of 18 of the 147 strains were determined to perform detailed clade-wide genome analyses together with 17 publicly available closed genomes. Intraclade variations in Stx2 production level and disease severity were also re-evaluated within the phylogenetic context. Based on phylogenomic analysis, clade 8 was divided into four lineages corresponding to the previously proposed SNP genotypes (SGs): SG8_30, SG8_31A, SG8_31B and SG8_32. SG8_30 and the common ancestor of the other SGs were first separated, with SG8_31A and SG8_31B emerging from the latter and SG8_32 emerging from SG8_31B. Comparison of 35 closed genomes revealed the overall structure of chromosomes and pO157 virulence plasmids and the prophage contents to be well conserved. However, Stx2a phages exhibit notable genomic diversity, even though all are integrated into the argW locus, indicating that subtype changes in Stx2a phage occurred from the γ subtype to its variant (γ_v1) in SG8_31A and from γ to δ in SG8_31B and SG8_32 via replacement of parts or almost entire phage genomes, respectively. We further show that SG8_30 strains (all carrying γ Stx2a phages) produce significantly higher levels of Stx2 and cause severe disease more frequently than SG8_32 strains (all carrying δ Stx2a phages). Clear conclusions on SG8_31A and SG8_31B cannot be made due to the small number of strains available, but as SG8_31A (carrying γ_v1 Stx2a phages) contains strains that produce much more Stx2 than SG8_30 strains, attention should also be paid to this SG.
Collapse
Affiliation(s)
- Tatsuya Miyata
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Itsuki Taniguchi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keiji Nakamura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Dai Yoshimura
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Shinichiro Hirai
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba 260-8715, Japan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba 260-8715, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
9
|
Alberca GGF, Cardoso NSS, Solis-Castro RL, Nakano V, Alberca RW. Intestinal inflammation and the microbiota: Beyond diversity. World J Gastroenterol 2022; 28:3274-3278. [PMID: 36051343 PMCID: PMC9331525 DOI: 10.3748/wjg.v28.i26.3274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/05/2021] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
The recent manuscript entitled “Relationship between clinical features and intestinal microbiota in Chinese patients with ulcerative colitis” reported a difference in the intestinal microbiota of patients with ulcerative colitis according to the severity of the colitis. The influence of the intestinal microbiota on the development and progress of gastrointestinal disorders is well established. Besides the diversity in the microbiome, the presence of virulence factors and toxins by commensal bacteria may affect an extensive variety of cellular processes, contributing to the induction of a proinflammatory environment.
Collapse
Affiliation(s)
- Gabriela Gama Freire Alberca
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Naiane Samira Souza Cardoso
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Rosa Liliana Solis-Castro
- Departamento Académico de Biología Bioquímica, Facultad de Ciencias de la Salud, Universidad Nacional de Tumbes, Pampa Grande 24000, Tumbes, Peru
| | - Viviane Nakano
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Ricardo Wesley Alberca
- Laboratorio de Dermatologia e Imunodeficiencias, Departamento de Dermatologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| |
Collapse
|
10
|
Allué-Guardia A, Koenig SSK, Martinez RA, Rodriguez AL, Bosilevac JM, Feng† P, Eppinger M. Pathogenomes and variations in Shiga toxin production among geographically distinct clones of Escherichia coli O113:H21. Microb Genom 2022; 8. [PMID: 35394418 PMCID: PMC9453080 DOI: 10.1099/mgen.0.000796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Infections with globally disseminated Shiga toxin-producing Escherichia coli (STEC) of the O113:H21 serotype can progress to severe clinical complications, such as hemolytic uremic syndrome (HUS). Two phylogeographically distinct clonal complexes have been established by multi locus sequence typing (MLST). Infections with ST-820 isolates circulating exclusively in Australia have caused severe human disease, such as HUS. Conversely, ST-223 isolates prevalent in the US and outside Australia seem to rarely cause severe human disease but are frequent contaminants. Following a genomic epidemiology approach, we wanted to gain insights into the underlying cause for this disparity. We examined the plasticity in the genome make-up and Shiga toxin production in a collection of 20 ST-820 and ST-223 strains isolated from produce, the bovine reservoir, and clinical cases. STEC are notorious for assembly into fragmented draft sequences when using short-read sequencing technologies due to the extensive and partly homologous phage complement. The application of long-read technology (LRT) sequencing yielded closed reference chromosomes and plasmids for two representative ST-820 and ST-223 strains. The established high-resolution framework, based on whole genome alignments, single nucleotide polymorphism (SNP)-typing and MLST, includes the chromosomes and plasmids of other publicly available O113:H21 sequences and allowed us to refine the phylogeographical boundaries of ST-820 and ST-223 complex isolates and to further identify a historic non-shigatoxigenic strain from Mexico as a quasi-intermediate. Plasmid comparison revealed strong correlations between the strains' featured pO113 plasmid genotypes and chromosomally inferred ST, which suggests coevolution of the chromosome and virulence plasmids. Our pathogenicity assessment revealed statistically significant differences in the Stx2a-production capabilities of ST-820 as compared to ST-223 strains under RecA-induced Stx phage mobilization, a condition that mimics Stx-phage induction. These observations suggest that ST-820 strains may confer an increased pathogenic potential in line with the strain-associated epidemiological metadata. Still, some of the tested ST-223 cultures sourced from contaminated produce or the bovine reservoir also produced Stx at levels comparable to those of ST-820 isolates, which calls for awareness and for continued surveillance of this lineage.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Ricardo A. Martinez
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Armando L. Rodriguez
- University of Texas at San Antonio, Research Computing Support Group, San Antonio, TX, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Peter Feng†
- U.S. Food and Drug Administration (FDA), College Park, MD, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
- *Correspondence: Mark Eppinger,
| |
Collapse
|
11
|
Switching Shiga Toxin (Stx) Type from Stx2d to Stx2a but Not Stx2c Alters Virulence of Stx-Producing Escherichia coli (STEC) Strain B2F1 in Streptomycin (Str)-Treated Mice. Toxins (Basel) 2021; 13:toxins13010064. [PMID: 33467588 PMCID: PMC7829771 DOI: 10.3390/toxins13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/23/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) strain B2F1 produces Stx type 2d, a toxin that becomes more toxic towards Vero cells in the presence of intestinal mucus. STEC that make Stx2d are more pathogenic to streptomycin (Str)-treated mice than most STEC that produce Stx2a or Stx2c. However, purified Stx2d is only 2- or 7-fold more toxic by the intraperitoneal route than Stx2a or Stx2c, respectively. We hypothesized, therefore, that the toxicity differences among Stx2a, Stx2c, and Stx2d occur at the level of delivery from the intestine. To evaluate that hypothesis, we altered the toxin type produced by stx2d+ mouse virulent O91:H21 clinical isolate B2F1 to Stx2a or Stx2c. Because B2F1 encodes two copies of stx2d, we did these studies in a derivative of B2F1 in which stx2d1 was deleted. Although the strains were equivalently virulent to the Str-treated mice at the 1010 dose, the B2F1 strain that produced Stx2a was attenuated relative to the ones that produced Stx2d or Stx2c when administered at 103 CFU/mouse. We next compared the oral toxicities of purified Stx2a, Stx2c, and Stx2d. We found that purified Stx2d is more toxic than Stx2a or Stx2c upon oral administration at 4 µg/mouse. Taken together, these studies suggest that Stx2 toxins are most potent when delivered directly from the bacterium. Furthermore, because Stx2d and Stx2c have the identical amino acid composition in the toxin B subunit, our results indicate that the virulence difference between Stx2a and Stx2d and Stx2c resides in the B or binding subunit of the toxins.
Collapse
|
12
|
Differential induction of Shiga toxin in environmental Escherichia coli O145:H28 strains carrying the same genotype as the outbreak strains. Int J Food Microbiol 2020; 339:109029. [PMID: 33360585 DOI: 10.1016/j.ijfoodmicro.2020.109029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) O145 is a major serotype associated with severe human disease. Production of Shiga toxins (Stxs), especially Stx2a, is thought to be correlated with STEC virulence. Since stx genes are located in prophages genomes, induction of prophages is required for effective Stxs production. Here, we investigated the production of Stxs in 12 environmental STEC O145:H28 strains under stresses STEC encounter in natural habitats and performed comparative analysis with two O145:H28 clinical strains, one linked to a 2010 U.S. lettuce-associated outbreak (RM13514) and the other linked to a 2007 Belgium ice cream-associated outbreak (RM13516). Similar to the outbreak strains, all environmental strains belong to Sequence Type (ST)-78 using the EcMLST typing scheme. Although all Stx1a-prophages were grouped together, variations in Stx1a production were observed prior to or following the inductions. Among all stx2a positive environmental strains, only the Stx2a-prophage in cattle isolate RM9154-C1 was clustered with the Stx2a-prophages in RM13514, the Stx2a-phage induced from a STEC O104:H4 strain linked to the 2011 outbreak of enterohemorrhagic infection in Germany, and the Stx2a-prophage in STEC O157:H7 strain EDL933, a prototype of enterohemorrhagic E. coli. Furthermore, the Stx2a-prophage in RM9154-C1 shared the same chromosomal insertion site and carried the same antiterminator Q gene and the late promoter PR' as the Stx2a-prophage in RM13514. Following mitomycin C or enrofloxacin treatment, the production of Stx2a in RM9154-C1 was the highest among all environmental strains tested. In contrast, following acid challenge and recovery, the production of Stx2a in RM9154-C1 was the lowest among all the environmental strains tested, at a level comparable to the clinical strains. A significant increase in Stx2a production was detected in all strains when exposed to H2O2, although the induction fold was much lower than those by other inducers. This low-efficiency induction of Stx-prophages by H2O2, a natural inducer of Stx-prophages, supports the hypothesis of bacterial altruism in controlling Stxs production, a strategy that assures the survival of the STEC population as a whole by sacrificing a small fraction of cells for Stxs production and release. Differential induction of Stxs among strains carrying nearly identical Stx-prophages suggests a role of host bacteria in regulating Stxs production. Our study revealed diverse Stx-prophages in STEC O145:H28 strains that were genotypically indistinguishable. Identification of a cattle isolate harboring a Stx2a-prophage associated with high virulence supports the premise that cattle, a natural reservoir of STEC, serve as a source of hypervirulent STEC strains.
Collapse
|