1
|
Mohammed-Salih HS, Ghazi A, Mahmood RI, Al‐Qazzaz HH, Supian FL, Al-Obaidi JR, Jabir M. Enhancing orthodontic treatment control with fish scale-derived hydroxyapatite nanoparticles: Insights from an animal model study. Saudi Dent J 2024; 36:1128-1134. [PMID: 39176163 PMCID: PMC11337960 DOI: 10.1016/j.sdentj.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 08/24/2024] Open
Abstract
Objectives This study investigates the impact of injected fish-scale-derived hydroxyapatite nanoparticles (FsHA-NPs) on orthodontic tooth movement (OTM) and the width of the periodontal ligament (PDL) space. Materials and Methods Twenty-six Wistar rats underwent mesial orthodontic traction with a force of 50 g for 21 days. Following the application of the orthodontic appliance, the rats were randomly divided into two groups: a control group, which received a 0.3 µg saline injection, and the experimental FsHA group, which received 100 mg/0.3 ml of FsHA-NPs after thorough characterisation. Injections were administered immediately after appliance application and repeated at 7 and 14 days. Statistical analysis was conducted with a significance level of P ≤ 0.05. Result The experimental group exhibited a significant reduction in OTM at 7-, 14-, and 21-day post-force application. Additionally, a reduction in PDL width was observed in the mesiocervical and disto-apical regions of the mesial and distal roots of the first molar. Conclusion FsHA-NPs derived from biowaste fish scales exhibit promising potential as biomaterials for enhancing control over OTM. This study underscores the viability, accessibility, and safety of FsHA-NPs as a locally injectable material for orthodontic applications.
Collapse
Affiliation(s)
| | - Ataa Ghazi
- P.O.P. Department, College of Dentistry, Mustansiriya University, Baghdad 10052, Iraq
| | - Rana I. Mahmood
- Department of Biomedical Engineering, College of Engineering, Al-Nahrain University, Jadriya, Baghdad, Iraq
| | - Haider H. Al‐Qazzaz
- Department of Pathology, Teaching Laboratories, Al Yarmouk Teaching Hospital, Baghdad 10017, Iraq
| | - Faridah Lisa Supian
- Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Jameel R. Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
- Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | - Majid Jabir
- Department of Applied Sciences -University of Technology, Baghdad 10066, Iraq
| |
Collapse
|
2
|
Hsia TL, Lin Z, Xia Y, Shu R, Xie Y. A photoresponsive recombinant human amelogenin-loaded hyaluronic acid hydrogel promotes bone regeneration. J Periodontal Res 2024; 59:589-598. [PMID: 38481308 DOI: 10.1111/jre.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/02/2023] [Accepted: 12/25/2023] [Indexed: 05/24/2024]
Abstract
OBJECTIVES In order to evaluate the effect of methacrylated hyaluronic acid (HAMA) hydrogels containing the recombinant human amelogenin (rhAm) in vitro and in vivo. BACKGROUND The ultimate goal in treating periodontal disease is to control inflammation and achieve regeneration of periodontal tissues. In recent years, methacrylated hyaluronic acid (HAMA) containing recombinant human amyloid protein (rhAm) has been widely used as a new type of biomaterial in tissue engineering and regenerative medicine. However, there is a lack of comprehensive research on the periodontal regeneration effects of this hydrogel. This experiment aims to explore the application of photoresponsive recombinant human amelogenin-loaded hyaluronic acid hydrogel for periodontal tissue regeneration and provide valuable insights into its potential use in this field. MATERIALS AND METHODS The effects of rhAm-HAMA hydrogel on the proliferation of human periodontal ligament cells (hPDLCs) were assessed using the CCK-8 kit. The osteogenic differentiation of hPDLCs was evaluated through ALP staining and real-time PCR. Calvarial parietal defects were created in 4-week-old Sprague Dawley rats and implanted with deproteinized bovine bone matrix in different treatment groups. The animals were euthanized after 4 and 8 weeks of healing. The bone volume of the defect was observed by micro-CT and histological analysis. RESULTS Stimulating hPDLCs with rhAm-HAMA hydrogel did not significantly affect their proliferation (p > .05). ALP staining and real-time PCR results demonstrated that the rhAm-HAMA group exhibited a significant upregulation of osteoclastic gene expression (p < .05). Micro-CT results revealed a significant increase in mineralized tissue volume fraction (MTV/TV%), trabecular bone number (Tb.N), and mineralized tissue density (MTD) of the bone defect area in the rhAm-HAMA group compared to the other groups (p < .05). The results of hematoxylin and eosin staining and Masson staining at 8 weeks post-surgery further supported the results of the micro-CT. CONCLUSIONS The results of this study indicate that rhAm-HAMA hydrogel could effectively promote the osteogenic differentiation of hPDLCs and stabilize bone substitutes in the defects that enhance the bone regeneration in vivo.
Collapse
Affiliation(s)
- Tung-Liang Hsia
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikai Lin
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yiru Xia
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Rong Shu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yufeng Xie
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Periodontology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Mascarenhas R, Hegde S, Manaktala N. Chitosan nanoparticle applications in dentistry: a sustainable biopolymer. Front Chem 2024; 12:1362482. [PMID: 38660569 PMCID: PMC11039901 DOI: 10.3389/fchem.2024.1362482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The epoch of Nano-biomaterials and their application in the field of medicine and dentistry has been long-lived. The application of nanotechnology is extensively used in diagnosis and treatment aspects of oral diseases. The nanomaterials and its structures are being widely involved in the production of medicines and drugs used for the treatment of oral diseases like periodontitis, oral carcinoma, etc. and helps in maintaining the longevity of oral health. Chitosan is a naturally occurring biopolymer derived from chitin which is seen commonly in arthropods. Chitosan nanoparticles are the latest in the trend of nanoparticles used in dentistry and are becoming the most wanted biopolymer for use toward therapeutic interventions. Literature search has also shown that chitosan nanoparticles have anti-tumor effects. This review highlights the various aspects of chitosan nanoparticles and their implications in dentistry.
Collapse
Affiliation(s)
- Roma Mascarenhas
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shreya Hegde
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Nidhi Manaktala
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
4
|
Su X, Li B, Chen S, Wang X, Song H, Shen B, Zheng Q, Yang M, Yue P. Pore engineering of micro/mesoporous nanomaterials for encapsulation, controlled release and variegated applications of essential oils. J Control Release 2024; 367:107-134. [PMID: 38199524 DOI: 10.1016/j.jconrel.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Essential oils have become increasingly popular in fields of medical, food and agriculture, owing to their strongly antimicrobial, anti-inflammation and antioxidant effects, greatly meeting demand from consumers for healthy and safe natural products. However, the easy volatility and/or chemical instability of active ingredients of essential oils (EAIs) can result in the loss of activity before realizing their functions, which have greatly hindered the widely applications of EAIs. As an emerging trend, micro/mesoporous nanomaterials (MNs) have drawn great attention for encapsulation and controlled release of EAIs, owing to their tunable pore structural characteristics. In this review, we briefly discuss the recent advances of MNs that widely used in the controlled release of EAIs, including zeolites, metal-organic frameworks (MOFs), mesoporous silica nanomaterials (MSNs), and provide a comprehensive summary focusing on the pore engineering strategies of MNs that affect their controlled-release or triggered-release for EAIs, including tailorable pore structure properties (e.g., pore size, pore surface area, pore volume, pore geometry, and framework compositions) and surface properties (surface modification and surface functionalization). Finally, the variegated applications and potential challenges are also given for MNs based delivery strategies for EAIs in the fields of healthcare, food and agriculture. These will provide considerable instructions for the rational design of MNs for controlled release of EAIs.
Collapse
Affiliation(s)
- Xiaoyu Su
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Biao Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shuiyan Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xinmin Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane 4072, Australia
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
5
|
Wang X, Huang S, Peng Q. Metal Ion-Doped Hydroxyapatite-Based Materials for Bone Defect Restoration. Bioengineering (Basel) 2023; 10:1367. [PMID: 38135958 PMCID: PMC10741145 DOI: 10.3390/bioengineering10121367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Hydroxyapatite (HA)-based materials are widely used in the bone defect restoration field due to their stable physical properties, good biocompatibility, and bone induction potential. To further improve their performance with extra functions such as antibacterial activity, various kinds of metal ion-doped HA-based materials have been proposed and synthesized. This paper offered a comprehensive review of metal ion-doped HA-based materials for bone defect restoration based on the introduction of the physicochemical characteristics of HA followed by the synthesis methods, properties, and applications of different kinds of metal ion (Ag+, Zn2+, Mg2+, Sr2+, Sm3+, and Ce3+)-doped HA-based materials. In addition, the underlying challenges for bone defect restoration using these materials and potential solutions were discussed.
Collapse
Affiliation(s)
- Xuan Wang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China;
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Shan Huang
- Changsha Health Vocational College, Changsha 410100, China;
| | - Qian Peng
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China;
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| |
Collapse
|
6
|
Chen J, Xiao J, Han X, Sima X, Guo W. An HA/PEEK scaffold with modified crystallinity via 3D-bioprinting for multiple applications in hard tissue engineering. Biomed Mater 2023; 18:065021. [PMID: 37852224 DOI: 10.1088/1748-605x/ad0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Hard tissues, especially teeth and bones, are highly mineralized and the large-scale defect or total loss of them is irreversible. There is still no ideal strategy for the reconstruction of various hard tissue defects that can achieve the balance between biological and mechanical properties. Polyether ether ketone (PEEK) has the potential to substitute for natural hard tissue in defect areas but is limited by its biological inertness. The addition of hydroxyapatite (HA) can significantly improve the osteogenic properties and osteointegration of PEEK materials. But the mechanical properties of HA/PEEK scaffolds are far from satisfaction making scaffolds easy to fracture. We put forward a strategy to balance the mechanical and biological properties of HA/PEEK scaffolds via the regulation of the inner crystallinity and HA mixing ratio and we systematically evaluated the modified HA/PEEK scaffolds through material characterization,in vitroandin vivoexperiments. And we found that the 20%HA/PEEK scaffolds with low crystallinity achieved the required strength and elasticity, and exhibited the characteristics of promoting the proliferation, migration and osteogenic differentiation of bone marrow mesenchymal stem cells. The results of the implantation of beagles' teeth, mandible and rib showed that the 20%HA/PEEK scaffold with low crystallinity could well withstand the local complex force in the defect area and combine well with natural bone tissue, which made it a candidate for a practical versatile hard tissue engineering scaffold.
Collapse
Affiliation(s)
- Jiahao Chen
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jingyi Xiao
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xue Han
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xiutian Sima
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Weihua Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Yunnan Key Laboratory of Stomatology, Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
7
|
Sun Q, Li Y, Luo P, He H. Animal models for testing biomaterials in periodontal regeneration. BIOMATERIALS TRANSLATIONAL 2023; 4:142-150. [PMID: 38283090 PMCID: PMC10817781 DOI: 10.12336/biomatertransl.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/02/2023] [Accepted: 09/04/2023] [Indexed: 01/30/2024]
Abstract
Periodontitis is a prevalent oral disease. It can cause tooth loss and has a significant impact on patients' quality of life. While existing treatments can only slow the progression of periodontitis, they are unable to achieve complete regeneration and functional reconstruction of periodontal tissues. As a result, regenerative therapies based on biomaterials have become a focal point of research in the field of periodontology. Despite numerous studies reporting the superiority of new materials in periodontal regeneration, limited progress has been made in translating these findings into clinical practice. This may be due to the lack of appropriate animal models to simulate the tissue defects caused by human periodontitis. This review aims to provide an overview of established animal models for periodontal regeneration, examine their advantages and limitations, and outline the steps for model construction. The objective is to determine the most relevant animal models for periodontal regeneration based on the hypothesis and expected outcomes.
Collapse
Affiliation(s)
- Qiao Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Yicun Li
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Centre, Guangdong Province, China
| | - Ping Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
8
|
Said HA, Mabroum H, Lahcini M, Oudadesse H, Barroug A, Youcef HB, Noukrati H. Manufacturing methods, properties, and potential applications in bone tissue regeneration of hydroxyapatite-chitosan biocomposites: A review. Int J Biol Macromol 2023:125150. [PMID: 37285882 DOI: 10.1016/j.ijbiomac.2023.125150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/06/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
Hydroxyapatite (HA) and chitosan (CS) biopolymer are the major materials investigated for biomedical purposes. Both of these components play an important role in the orthopedic field as bone substitutes or drug release systems. Used separately, the hydroxyapatite is quite fragile, while CS mechanical strength is very weak. Therefore, a combination of HA and CS polymer is used, which provides excellent mechanical performance with high biocompatibility and biomimetic capacity. Moreover, the porous structure and reactivity of the hydroxyapatite-chitosan (HA-CS) composite allow their application not only as a bone repair but also as a drug delivery system providing controlled drug release directly to the bone site. These features make biomimetic HA-CS composite a subject of interest for many researchers. Through this review, we provide the important recent achievements in the development of HA-CS composites, focusing on manufacturing techniques, conventional and novel three-dimensional bioprinting technology, and physicochemical and biological properties. The drug delivery properties and the most relevant biomedical applications of the HA-CS composite scaffolds are also presented. Finally, alternative approaches are proposed to develop HA composites with the aim to improve their physicochemical, mechanical, and biological properties.
Collapse
Affiliation(s)
- H Ait Said
- Mohammed VI Polytechnic University (UM6P), High Throughput Multidisciplinary Research laboratory (HTMR-Lab), 43150 Benguerir, Morocco; Cadi Ayyad University, Faculty of Sciences Semlalia (SCIMATOP), Bd Prince My Abdellah, BP 2390, 40000 Marrakech, Morocco
| | - H Mabroum
- Mohammed VI Polytechnic University (UM6P), Faculty of Medical Sciences (FMS), High Institute of Biological and Paramedical Sciences, ISSB-P, Morocco
| | - M Lahcini
- Cadi Ayyad University, Faculty of Sciences and Technologies, IMED Lab, 40000 Marrakech, Morocco
| | - H Oudadesse
- University of Rennes1, ISCR-UMR, 6226 Rennes, France
| | - A Barroug
- Cadi Ayyad University, Faculty of Sciences Semlalia (SCIMATOP), Bd Prince My Abdellah, BP 2390, 40000 Marrakech, Morocco; Mohammed VI Polytechnic University (UM6P), Faculty of Medical Sciences (FMS), High Institute of Biological and Paramedical Sciences, ISSB-P, Morocco
| | - H Ben Youcef
- Mohammed VI Polytechnic University (UM6P), High Throughput Multidisciplinary Research laboratory (HTMR-Lab), 43150 Benguerir, Morocco.
| | - H Noukrati
- Mohammed VI Polytechnic University (UM6P), Faculty of Medical Sciences (FMS), High Institute of Biological and Paramedical Sciences, ISSB-P, Morocco.
| |
Collapse
|
9
|
Amato M, Santonocito S, Polizzi A, Tartaglia GM, Ronsivalle V, Viglianisi G, Grippaudo C, Isola G. Local Delivery and Controlled Release Drugs Systems: A New Approach for the Clinical Treatment of Periodontitis Therapy. Pharmaceutics 2023; 15:pharmaceutics15041312. [PMID: 37111796 PMCID: PMC10143241 DOI: 10.3390/pharmaceutics15041312] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis is an inflammatory disease of the gums characterized by the degeneration of periodontal ligaments, the formation of periodontal pockets, and the resorption of the alveolar bone, which results in the destruction of the teeth's supporting structure. Periodontitis is caused by the growth of diverse microflora (particularly anaerobes) in the pockets, releasing toxins and enzymes and stimulating the immune system. Various approaches, both local and systemic, have been used to treat periodontitis effectively. Successful treatment depends on reducing bacterial biofilm, bleeding on probing (BOP), and reducing or eliminating pockets. Currently, the use of local drug delivery systems (LDDSs) as an adjunctive therapy to scaling and root planing (SRP) in periodontitis is a promising strategy, resulting in greater efficacy and fewer adverse effects by controlling drug release. Selecting an appropriate bioactive agent and route of administration is the cornerstone of a successful periodontitis treatment plan. In this context, this review focuses on applications of LDDSs with varying properties in treating periodontitis with or without systemic diseases to identify current challenges and future research directions.
Collapse
Affiliation(s)
- Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy
| | - Vincenzo Ronsivalle
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Cristina Grippaudo
- Department of Head and Neck, Division of Oral Surgery and Implantology, Catholic University of the Sacred Heart, Fondazione Policlinico Gemelli IRCCS, 00168 Rome, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| |
Collapse
|
10
|
Bioresorbable Chitosan-Based Bone Regeneration Scaffold Using Various Bioceramics and the Alteration of Photoinitiator Concentration in an Extended UV Photocrosslinking Reaction. Gels 2022; 8:gels8110696. [DOI: 10.3390/gels8110696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Bone tissue engineering (BTE) is an ongoing field of research based on clinical needs to treat delayed and non-union long bone fractures. An ideal tissue engineering scaffold should have a biodegradability property matching the rate of new bone turnover, be non-toxic, have good mechanical properties, and mimic the natural extracellular matrix to induce bone regeneration. In this study, biodegradable chitosan (CS) scaffolds were prepared with combinations of bioactive ceramics, namely hydroxyapatite (HAp), tricalcium phosphate-α (TCP- α), and fluorapatite (FAp), with a fixed concentration of benzophenone photoinitiator (50 µL of 0.1% (w/v)) and crosslinked using a UV curing system. The efficacy of the one-step crosslinking reaction was assessed using swelling and compression testing, SEM and FTIR analysis, and biodegradation studies in simulated body fluid. Results indicate that the scaffolds had comparable mechanical properties, which were: 13.69 ± 1.06 (CS/HAp), 12.82 ± 4.10 (CS/TCP-α), 13.87 ± 2.9 (CS/HAp/TCP-α), and 15.55 ± 0.56 (CS/FAp). Consequently, various benzophenone concentrations were added to CS/HAp formulations to determine their effect on the degradation rate. Based on the mechanical properties and degradation profile of CS/HAp, it was found that 5 µL of 0.1% (w/v) benzophenone resulted in the highest degradation rate at eight weeks (54.48% degraded), while maintaining compressive strength between (4.04 ± 1.49 to 10.17 ± 4.78 MPa) during degradation testing. These results indicate that incorporating bioceramics with a suitable photoinitiator concentration can tailor the biodegradability and load-bearing capacity of the scaffolds.
Collapse
|
11
|
Sekar S, Panchu SE, Kolanthai E, Subbaraya NK. Enhanced fluoride adsorption and regeneration efficiency of cross-linker-free mesoporous hydroxyapatite/chitosan nanocomposites. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Chitosan-based therapeutic systems and their potentials in treatment of oral diseases. Int J Biol Macromol 2022; 222:3178-3194. [DOI: 10.1016/j.ijbiomac.2022.10.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
13
|
Yang Z, Liu W, Liu H, Li R, Chang L, Kan S, Hao M, Wang D. The applications of polysaccharides in dentistry. Front Bioeng Biotechnol 2022; 10:970041. [PMID: 35935501 PMCID: PMC9355030 DOI: 10.3389/fbioe.2022.970041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
Polysaccharides are natural polymers widely present in animals, plants, and several microorganisms. Polysaccharides have remarkable properties, including easy extractions, degradability, and renewability, and have no apparent toxicity, making them ideal for biomedical applications. Moreover, polysaccharides are suitable for repairing oral tissue defects and treating oral diseases due to their excellent biocompatibility, biosafety, anti-inflammatory, and antibacterial properties. The oral cavity is a relatively complex environment vulnerable to numerous conditions, including soft tissue diseases, hard tissue disorders, and as well as soft and hard tissue diseases, all of which are complex to treat. In this article, we reviewed different structures of natural polysaccharides with high commercial values and their applications in treating various oral disease, such as drug delivery, tissue regeneration, material modification, and tissue repair.
Collapse
Affiliation(s)
- Zhijing Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huimin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Lu Chang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dongxu Wang,
| |
Collapse
|
14
|
Shang L, Shao J, Ge S. Immunomodulatory Properties: The Accelerant of Hydroxyapatite-Based Materials for Bone Regeneration. Tissue Eng Part C Methods 2022; 28:377-392. [PMID: 35196904 DOI: 10.1089/ten.tec.2022.00111112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The immunoinflammatory response is the prerequisite step for wound healing and tissue regeneration, and the immunomodulatory effects of biomaterials have attracted increasing attention. Hydroxyapatite [Ca10(PO4)6(OH)2] (HAp), a common calcium phosphate ceramic, due to its structural and functional similarity to the inorganic constituent of natural bones, has been developed for different application purposes such as bone substitutes, tissue engineering scaffolds, and implant coatings. Recently, the interaction between HAp-based materials and the immune system (various immune cells), and the immunomodulatory effects of HAp-based materials on bone tissue regeneration have been explored extensively. Macrophages-mediated regenerative effect by HAp stimulation occupies the mainstream status of immunomodulatory strategies. The immunomodulation of HAp can be manipulated by tuning the physical, chemical, and biological cues such as surface functionalization (physical or chemical modifications), structural and textural characteristics (size, shape, and surface topography), and the incorporation of bioactive substances (cytokines, rare-earth elements, and bioactive ions). Therefore, HAp ceramic materials can contribute to bone regeneration by creating a favorable osteoimmune microenvironment, which would provide a more comprehensive theoretical basis for their further clinical applications. Considering the rapidly developed HAp-based materials as well as their excellent biological performances in the field of regenerative medicine, this review discusses the recent advances concerning the immunomodulatory methods for HAp-based biomaterials and their roles in bone tissue regeneration.
Collapse
Affiliation(s)
- Lingling Shang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jinlong Shao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
15
|
Tien Lam N, Minh Quan V, Boonrungsiman S, Sukyai P. Effectiveness of bio-dispersant in homogenizing hydroxyapatite for proliferation and differentiation of osteoblast. J Colloid Interface Sci 2022; 611:491-502. [PMID: 34973654 DOI: 10.1016/j.jcis.2021.12.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/27/2021] [Accepted: 12/14/2021] [Indexed: 11/28/2022]
Abstract
Hydroxyapatite (HA), an inorganic compound, plays an essential role in the proliferation and differentiation of bone cells. Using cellulose nanocrystals (CNCs) as green dispersants to improve homogenization of HA is promising in the fabrication of nanocomposite scaffolds with biocompatibility for bone tissue engineering. The HA/CNC (HC) nanoparticle suspension was incorporated in polyvinyl alcohol (PVA)-based scaffold to investigate the physical and chemical properties. The PVA/HC composites demonstrated high porous structure and swelling ability for cell attachment and a 3-fold improvement in compressive modulus compared with free HC scaffold. Moreover, the presence of HC nanoparticles has promoted the proliferation and mineralization of pre-osteoblast. Our findings could provide an effective strategy by using bio-dispersants to incorporate mineral elements into synthetic polymers for the fabrication of functional tissue engineering scaffolds.
Collapse
Affiliation(s)
- Nga Tien Lam
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Vo Minh Quan
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Suwimon Boonrungsiman
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Prakit Sukyai
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
16
|
Burdușel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022; 14:770. [PMID: 35456604 PMCID: PMC9027776 DOI: 10.3390/pharmaceutics14040770] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Modern biomedicine aims to develop integrated solutions that use medical, biotechnological, materials science, and engineering concepts to create functional alternatives for the specific, selective, and accurate management of medical conditions. In the particular case of tissue engineering, designing a model that simulates all tissue qualities and fulfills all tissue requirements is a continuous challenge in the field of bone regeneration. The therapeutic protocols used for bone healing applications are limited by the hierarchical nature and extensive vascularization of osseous tissue, especially in large bone lesions. In this regard, nanotechnology paves the way for a new era in bone treatment, repair and regeneration, by enabling the fabrication of complex nanostructures that are similar to those found in the natural bone and which exhibit multifunctional bioactivity. This review aims to lay out the tremendous outcomes of using inorganic nanoparticles in bone healing applications, including bone repair and regeneration, and modern therapeutic strategies for bone-related pathologies.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90–92 Panduri Road, 050657 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
17
|
Effectiveness of Combination of Chitosan Gel and Hydroxyapatite from Crabs Shells (Portunus pelagicus) Waste as Bonegraft on Periodontal Network Regeneration through IL-1 and BMP-2 Analysis. Int J Biomater 2022; 2022:1817236. [PMID: 35356491 PMCID: PMC8958107 DOI: 10.1155/2022/1817236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Periodontitis can be treated by regenerating periodontal tissue using a bone graft. Several natural materials such as chitosan and minerals such as hydroxyapatite can be developed to increase periodontal tissue regeneration. Chitosan has a high potential in healing wounds. Hydroxyapatite has excellent properties such as biocompatibility, osteoconductive, osteoinductive, and osteogenesis, making it an ideal material for soft and hard tissue regeneration. Chitosan and hydroxyapatite can be obtained from the shells of crustaceans, such as crabs shells (Portunus pelagicus). Objective. To assess the effectiveness of the combination of chitosan gel and hydroxyapatite powder as a bone graft on periodontal tissue regeneration in experimental animals. Periodontal tissue regeneration was assessed by expressing inflammatory cytokine gene indicators IL-1 and BMP-2. Methods. Experimental laboratory research and clinical trials with posttest only control group design. Twenty-seven Wistar rats were divided into three groups. Then the femoral bone defect was made, the positive control group was given placebo gel, the positive control group was given BATAN hydroxyapatite, and the test group was given a combination of chitosan gel and hydroxyapatite crab shells. Wistar rats were sacrificed on days 7, 14, and 21, and the femur bone was then taken for immunohistochemical analysis to determine the levels of IL-1 and BMP-2. The Kolmogorov–Smirnov test, Levene test, and one-way ANOVA analyzed the data. Results. On days 7, 14, and 21, the expression levels of IL-1 and BMP2 were significantly different between the three groups. The group added with chitosan gel and crab shell HA showed a faster decrease in IL-1 expression than the control group. BMP-2 expression increased in the test group compared to the control group. Conclusion. The combination of chitosan gel and hydroxyapatite inhibited the production of proinflammatory cytokines and increased the production of BMP-2.
Collapse
|
18
|
Gani A, Yulianti R, Supiaty S, Rusdy M. Application of Chitosan and Hydroxyapatite in Periodontal Tissue Regeneration: A Review. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Chronic periodontitis is an infection caused by bacteria in the gum tissue that supports the teeth. The current periodontal therapy manages or removes periodontal infections and repairs the periodontium destroyed due to periodontal disease. Due to its biodegradability and biocompatibility, chitosan (CH) and hydroxyapatite (HAP) are employed for bone tissue healing. The purpose of this study was to compare the utilization of CH and HAP in the regeneration of periodontal tissue. The presented study is a systematic review prepared from a collection of recent relevant published articles. This research was conducted by reviewing articles from 2016 to August 2021. The analysis found that CH/HAP is a therapeutic strategy for chronic periodontitis patients that allow low-cost bone regeneration, mHA/CH scaffolds may inhibit the growth of periodontal pathogens, and CH or HAP has the potential to be developed bone tissue engineering.
Collapse
|
19
|
Guo H, Huang S, Yang X, Wu J, Kirk TB, Xu J, Xu A, Xue W. Injectable and Self-Healing Hydrogels with Double-Dynamic Bond Tunable Mechanical, Gel-Sol Transition and Drug Delivery Properties for Promoting Periodontium Regeneration in Periodontitis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61638-61652. [PMID: 34908393 DOI: 10.1021/acsami.1c18701] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Injection of a hydrogel loaded with drugs with simultaneous anti-inflammatory and tissue regenerating properties can be an effective treatment for promoting periodontal regeneration in periodontitis. Nevertheless, the design and preparation of an injectable hydrogel with self-healing properties for tunable sustained drug release is still highly desired. In this work, polysaccharide-based hydrogels were formed by a dynamic cross-linked network of dynamic Schiff base bonds and dynamic coordination bonds. The hydrogels showed a quick gelation process, injectability, and excellent self-healing properties. In particular, the hydrogels formed by a double-dynamic network would undergo a gel-sol transition process without external stimuli. And the gel-sol transition time could be tuned by the double-dynamic network structure for in situ stimuli involving a change in its own molecular structure. Moreover, the drug delivery properties were also tunable owing to the gel-sol transition process. Sustained drug release characteristics, which were ascribed to a diffusion process, were observed during the first stage of drug release, and complete drug release owing to the gel-sol transition process was achieved. The sustained drug release time could be tuned according to the double-dynamic bonds in the hydrogel. The CCK-8 assay was used to evaluate the cytotoxicity, and the result showed no cytotoxicity, indicating that the injectable and self-healing hydrogels with double-dynamic bond tunable gel-sol transition could be safely used in controlled drug delivery for periodontal disease therapy. Finally, the promotion of periodontal regeneration in periodontitis in vivo was investigated using hydrogels loaded with ginsenoside Rg1 and amelogenin. Micro-CT and histological analyses indicated that the hydrogels were promising candidates for addressing the practical needs of a tunable drug delivery method for promoting periodontal regeneration in periodontitis.
Collapse
Affiliation(s)
- Huilong Guo
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Shan Huang
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Xuanfan Yang
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Jianping Wu
- 3D Imaging and Bioengineering Laboratory, Department of Mechanical Engineering, Curtin University, Perth 6845, Australia
| | - Thomas Brett Kirk
- 3D Imaging and Bioengineering Laboratory, Department of Mechanical Engineering, Curtin University, Perth 6845, Australia
| | - Jiake Xu
- The School of Pathology and Laboratory Medicine, University of Western Australia, Perth 6009, Australia
| | - Anding Xu
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Wei Xue
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
- Institutes of Life and Health Engineering, Jinan University, Guangzhou 510632, China
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
20
|
Fabrication of Novel Chitosan–Hydroxyapatite Nanostructured Thin Films for Biomedical Applications. COATINGS 2021. [DOI: 10.3390/coatings11121561] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, we develop chitosan–hydroxyapatite (CS–HAp) composite layers that were deposited on Si substrates in radio frequency (RF) magnetron sputtering discharge in argon gas. The composition and structure of CS–HAp composite layers were investigated by analytical techniques, such as Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), metallographic microscopy (MM), and atomic force microscopy (AFM). On the other hand, in the present study the second order derivative of FT-IR–ATR spectra, for compositional analyses of CS–HAp, were used. The SEM, MM, and AFM data have shown the formation of CS–HAp composite layers. The surface of CS–HAp composite layers showed uniform growth (at an Ar gas working pressure of p = 2 × 10−3 mbar). The surface of the CS–HAp composites coatings became more nanostructured, becoming granular as the gas pressure increased from 5 × 10−3 to 1.2 × 10−2 mbar. However, our studies revealed that the surface morphology of the CS–HAp composite layers varies with the Ar gas working pressure. At the same time, optical properties are slightly influenced by Ar pressure. Their unique physicochemical properties make them suitable for various applications in the biomedical field, if we consider the already proven antimicrobial properties of chitosan. The antifungal properties and the capacity of the CS–HAp composite layers to inhibit the development of fungal biofilms were also demonstrated using the Candida albicans ATCC 10231 (C. albicans) fungal strain.
Collapse
|
21
|
Huang Q, Huang X, Gu L. Periodontal Bifunctional Biomaterials: Progress and Perspectives. MATERIALS 2021; 14:ma14247588. [PMID: 34947197 PMCID: PMC8709483 DOI: 10.3390/ma14247588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022]
Abstract
Periodontitis is a chronic infectious disease that destroys periodontal supportive tissues and eventually causes tooth loss. It is attributed to microbial and immune factors. The goal of periodontal therapy is to achieve complete alveolar bone regeneration while keeping inflammation well-controlled. To reach this goal, many single or composite biomaterials that produce antibacterial and osteogenic effects on periodontal tissues have been developed, which are called bifunctional biomaterials. In this review, we summarize recent progress in periodontal bifunctional biomaterials including bioactive agents, guided tissue regeneration/guided bone regeneration (GTR/GBR) membranes, tissue engineering scaffolds and drug delivery systems and provide novel perspectives. In conclusion, composite biomaterials have been greatly developed and they should be chosen with care due to the risk of selection bias and the lack of evaluation of the validity of the included studies.
Collapse
Affiliation(s)
- Qiuxia Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China;
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Xin Huang
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Correspondence: (X.H.); (L.G.)
| | - Lisha Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China;
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
- Correspondence: (X.H.); (L.G.)
| |
Collapse
|
22
|
Woo HN, Cho YJ, Tarafder S, Lee CH. The recent advances in scaffolds for integrated periodontal regeneration. Bioact Mater 2021; 6:3328-3342. [PMID: 33817414 PMCID: PMC7985477 DOI: 10.1016/j.bioactmat.2021.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
The periodontium is an integrated, functional unit of multiple tissues surrounding and supporting the tooth, including but not limited to cementum (CM), periodontal ligament (PDL) and alveolar bone (AB). Periodontal tissues can be destructed by chronic periodontal disease, which can lead to tooth loss. In support of the treatment for periodontally diseased tooth, various biomaterials have been applied starting as a contact inhibition membrane in the guided tissue regeneration (GTR) that is the current gold standard in dental clinic. Recently, various biomaterials have been prepared in a form of tissue engineering scaffold to facilitate the regeneration of damaged periodontal tissues. From a physical substrate to support healing of a single type of periodontal tissue to multi-phase/bioactive scaffold system to guide an integrated regeneration of periodontium, technologies for scaffold fabrication have emerged in last years. This review covers the recent advancements in development of scaffolds designed for periodontal tissue regeneration and their efficacy tested in vitro and in vivo. Pros and Cons of different biomaterials and design parameters implemented for periodontal tissue regeneration are also discussed, including future perspectives.
Collapse
Affiliation(s)
| | | | - Solaiman Tarafder
- Center for Dental and Craniofacial Research, Columbia University Medical Center, 630 W. 168 St., VC12-212, New York, NY, 10032, USA
| | - Chang H. Lee
- Center for Dental and Craniofacial Research, Columbia University Medical Center, 630 W. 168 St., VC12-212, New York, NY, 10032, USA
| |
Collapse
|
23
|
Sukpaita T, Chirachanchai S, Pimkhaokham A, Ampornaramveth RS. Chitosan-Based Scaffold for Mineralized Tissues Regeneration. Mar Drugs 2021; 19:551. [PMID: 34677450 PMCID: PMC8540467 DOI: 10.3390/md19100551] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022] Open
Abstract
Conventional bone grafting procedures used to treat bone defects have several limitations. An important aspect of bone tissue engineering is developing novel bone substitute biomaterials for bone grafts to repair orthopedic defects. Considerable attention has been given to chitosan, a natural biopolymer primarily extracted from crustacean shells, which offers desirable characteristics, such as being biocompatible, biodegradable, and osteoconductive. This review presents an overview of the chitosan-based biomaterials for bone tissue engineering (BTE). It covers the basic knowledge of chitosan in terms of biomaterials, the traditional and novel strategies of the chitosan scaffold fabrication process, and their advantages and disadvantages. Furthermore, this paper integrates the relevant contributions in giving a brief insight into the recent research development of chitosan-based scaffolds and their limitations in BTE. The last part of the review discusses the next-generation smart chitosan-based scaffold and current applications in regenerative dentistry and future directions in the field of mineralized tissue regeneration.
Collapse
Affiliation(s)
- Teerawat Sukpaita
- Research Unit on Oral Microbiology and Immunology, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Suwabun Chirachanchai
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand;
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Atiphan Pimkhaokham
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
24
|
Bhat S, Uthappa UT, Altalhi T, Jung HY, Kurkuri MD. Functionalized Porous Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review. ACS Biomater Sci Eng 2021; 8:4039-4076. [PMID: 34499471 DOI: 10.1021/acsbiomaterials.1c00438] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomaterials have been widely used in tissue engineering applications at an increasing rate in recent years. The increased clinical demand for safe scaffolds, as well as the diversity and availability of biomaterials, has sparked rapid interest in fabricating diverse scaffolds to make significant progress in tissue engineering. Hydroxyapatite (HAP) has drawn substantial attention in recent years owing to its excellent physical, chemical, and biological properties and facile adaptable surface functionalization with other innumerable essential materials. This focused review spotlights a brief introduction on HAP, scope, a historical outline, basic structural features/properties, various synthetic strategies, and their scientific applications concentrating on functionalized HAP in the diverse area of tissue engineering fields such as bone, skin, periodontal, bone tissue fixation, cartilage, blood vessel, liver, tendon/ligament, and corneal are emphasized. Besides clinical translation aspects, the future challenges and prospects of HAP based biomaterials involved in tissue engineering are also discussed. Furthermore, it is expected that researchers may find this review expedient in gaining an overall understanding of the latest advancement of HAP based biomaterials.
Collapse
Affiliation(s)
- Shrinath Bhat
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - U T Uthappa
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India.,Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Mahaveer D Kurkuri
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| |
Collapse
|
25
|
Baranov N, Popa M, Atanase LI, Ichim DL. Polysaccharide-Based Drug Delivery Systems for the Treatment of Periodontitis. Molecules 2021; 26:2735. [PMID: 34066568 PMCID: PMC8125343 DOI: 10.3390/molecules26092735] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
Periodontal diseases are worldwide health problems that negatively affect the lifestyle of many people. The long-term effect of the classical treatments, including the mechanical removal of bacterial plaque, is not effective enough, causing the scientific world to find other alternatives. Polymer-drug systems, which have different forms of presentation, chosen depending on the nature of the disease, the mode of administration, the type of polymer used, etc., have become very promising. Hydrogels, for example (in the form of films, micro-/nanoparticles, implants, inserts, etc.), contain the drug included, encapsulated, or adsorbed on the surface. Biologically active compounds can also be associated directly with the polymer chains by covalent or ionic binding (polymer-drug conjugates). Not just any polymer can be used as a support for drug combination due to the constraints imposed by the fact that the system works inside the body. Biopolymers, especially polysaccharides and their derivatives and to a lesser extent proteins, are preferred for this purpose. This paper aims to review in detail the biopolymer-drug systems that have emerged in the last decade as alternatives to the classical treatment of periodontal disease.
Collapse
Affiliation(s)
- Nicolae Baranov
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania;
| | - Marcel Popa
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania;
- Academy of Romanian Scientists, 50085 Bucharest, Romania
| | | | | |
Collapse
|
26
|
Chen ZY, Gao S, Zhang YW, Zhou RB, Zhou F. Antibacterial biomaterials in bone tissue engineering. J Mater Chem B 2021; 9:2594-2612. [PMID: 33666632 DOI: 10.1039/d0tb02983a] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone infection is a devastating disease characterized by recurrence, drug-resistance, and high morbidity, that has prompted clinicians and scientists to develop novel approaches to combat it. Currently, although numerous biomaterials that possess excellent biocompatibility, biodegradability, porosity, and mechanical strength have been developed, their lack of effective antibacterial ability substantially limits bone-defect treatment efficacy. There is, accordingly, a pressing need to design antibacterial biomaterials for effective bone-infection prevention and treatment. This review focuses on antibacterial biomaterials and strategies; it presents recently reported biomaterials, including antibacterial implants, antibacterial scaffolds, antibacterial hydrogels, and antibacterial bone cement types, and aims to provide an overview of these antibacterial materials for application in biomedicine. The antibacterial mechanisms of these materials are discussed as well.
Collapse
Affiliation(s)
- Zheng-Yang Chen
- Orthopedic Department, Peking University Third Hospital, Beijing 100191, China.
| | | | | | | | | |
Collapse
|
27
|
Ignatovich Z, Novik K, Abakshonok A, Koroleva E, Beklemisheva A, Panina L, Kaniukov E, Anisovich M, Shumskaya A. One-Step Synthesis of Magnetic Nanocomposite with Embedded Biologically Active Substance. Molecules 2021; 26:937. [PMID: 33578897 PMCID: PMC7916710 DOI: 10.3390/molecules26040937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Magnetic nanocomposites based on hydroxyapatite were prepared by a one-step process using the hydrothermal coprecipitation method to sinter iron oxides (Fe3O4 and γ-Fe2O3). The possibility of expanding the proposed technique for the synthesis of magnetic composite with embedded biologically active substance (BAS) of the 2-arylaminopyrimidine group was shown. The composition, morphology, structural features, and magnetic characteristics of the nanocomposites synthesized with and without BAS were studied. The introduction of BAS into the composite synthesis resulted in minor changes in the structural and physical properties. The specificity of the chemical bonds between BAS and the hydroxyapatite-magnetite core was revealed. The kinetics of the BAS release in a solution simulating the stomach environment was studied. The cytotoxicity of (HAP)FexOy and (HAP)FexOy + BAS composites was studied in vitro using the primary culture of human liver carcinoma cells HepG2. The synthesized magnetic composites with BAS have a high potential for use in the biomedical field, for example, as carriers for magnetically controlled drug delivery and materials for bone tissue engineering.
Collapse
Affiliation(s)
- Zhanna Ignatovich
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (Z.I.); (K.N.); (A.A.); (E.K.); (A.S.)
| | - Khristina Novik
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (Z.I.); (K.N.); (A.A.); (E.K.); (A.S.)
| | - Anna Abakshonok
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (Z.I.); (K.N.); (A.A.); (E.K.); (A.S.)
| | - Elena Koroleva
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (Z.I.); (K.N.); (A.A.); (E.K.); (A.S.)
| | - Anna Beklemisheva
- Department of Technology of Electronics Materials, National University of Science and Technology MISiS, 119049 Moscow, Russia; (A.B.); (L.P.)
| | - Larisa Panina
- Department of Technology of Electronics Materials, National University of Science and Technology MISiS, 119049 Moscow, Russia; (A.B.); (L.P.)
- Institute of Physics, Mathematics & IT, Immanuel Kant Baltic Federal University, 236004 Kaliningrad, Russia
| | - Egor Kaniukov
- Department of Technology of Electronics Materials, National University of Science and Technology MISiS, 119049 Moscow, Russia; (A.B.); (L.P.)
| | - Marina Anisovich
- Republican Unitary Enterprise “Scientific-Practical Centre of Hygiene”, 220012 Minsk, Belarus;
| | - Alena Shumskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (Z.I.); (K.N.); (A.A.); (E.K.); (A.S.)
| |
Collapse
|
28
|
Fakhri E, Eslami H, Maroufi P, Pakdel F, Taghizadeh S, Ganbarov K, Yousefi M, Tanomand A, Yousefi B, Mahmoudi S, Kafil HS. Chitosan biomaterials application in dentistry. Int J Biol Macromol 2020; 162:956-974. [DOI: 10.1016/j.ijbiomac.2020.06.211] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022]
|