1
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
2
|
Ragonis-Bachar P, Axel G, Blau S, Ben-Tal N, Kolodny R, Landau M. What can AlphaFold do for antimicrobial amyloids? Proteins 2024; 92:265-281. [PMID: 37855235 DOI: 10.1002/prot.26618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/05/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023]
Abstract
Amyloids, protein, and peptide assemblies in various organisms are crucial in physiological and pathological processes. Their intricate structures, however, present significant challenges, limiting our understanding of their functions, regulatory mechanisms, and potential applications in biomedicine and technology. This study evaluated the AlphaFold2 ColabFold method's structure predictions for antimicrobial amyloids, using eight antimicrobial peptides (AMPs), including those with experimentally determined structures and AMPs known for their distinct amyloidogenic morphological features. Additionally, two well-known human amyloids, amyloid-β and islet amyloid polypeptide, were included in the analysis due to their disease relevance, short sequences, and antimicrobial properties. Amyloids typically exhibit tightly mated β-strand sheets forming a cross-β configuration. However, certain amphipathic α-helical subunits can also form amyloid fibrils adopting a cross-α structure. Some AMPs in the study exhibited a combination of cross-α and cross-β amyloid fibrils, adding complexity to structure prediction. The results showed that the AlphaFold2 ColabFold models favored α-helical structures in the tested amyloids, successfully predicting the presence of α-helical mated sheets and a hydrophobic core resembling the cross-α configuration. This implies that the AI-based algorithms prefer assemblies of the monomeric state, which was frequently predicted as helical, or capture an α-helical membrane-active form of toxic peptides, which is triggered upon interaction with lipid membranes.
Collapse
Affiliation(s)
| | - Gabriel Axel
- George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Blau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nir Ben-Tal
- George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Kolodny
- Department of Computer Science, University of Haifa, Haifa, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- The Center for Experimental Medicine, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| |
Collapse
|
3
|
Sun C, Liu W, Wang L, Meng R, Deng J, Qing R, Wang B, Hao S. Photopolymerized keratin-PGLa hydrogels for antibiotic resistance reversal and enhancement of infectious wound healing. Mater Today Bio 2023; 23:100807. [PMID: 37810750 PMCID: PMC10558788 DOI: 10.1016/j.mtbio.2023.100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/04/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
Infectious wounds have become serious challenges for both treatment and management in clinical practice, so development of new antibiotics has been considered an increasingly difficult task. Here, we report the design and synthesis of keratin 31 (K31)-peptide glycine-leucine-amide (PGLa) photopolymerized hydrogels to rescue the antibiotic activity of antibiotics for infectious wound healing promotion. K31-PGLa displayed an outstanding synergistic effect with commercial antibiotics against drug-resistant bacteria by down-regulating the synthesis genes of efflux pump. Furthermore, the photopolymerized K31-PGLa/PEGDA hydrogels effectively suppressed drug-resistant bacteria growth and enhanced skin wound closure in murine. This study provided a promising alternative strategy for infectious wound treatment.
Collapse
Affiliation(s)
- Changfa Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Wenjie Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Lili Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
4
|
Tang Y, Zhang D, Zheng J. Repurposing Antimicrobial Protegrin-1 as a Dual-Function Amyloid Inhibitor via Cross-seeding. ACS Chem Neurosci 2023; 14:3143-3155. [PMID: 37589476 DOI: 10.1021/acschemneuro.3c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Amyloids and antimicrobial peptides have traditionally been recognized as distinct families with separate biological functions and targets. However, certain amyloids and antimicrobial peptides share structural and functional characteristics that contribute to the development of neurodegenerative diseases. Specifically, the aggregation of amyloid-β (Aβ) and microbial infections are interconnected pathological factors in Alzheimer's disease (AD). In this study, we propose and demonstrate a novel repurposing strategy for an antimicrobial peptide of protegrin-1 (PG-1), which exhibits the ability to simultaneously prevent Aβ aggregation and microbial infection both in vitro and in vivo. Through a comprehensive analysis using protein, cell, and worm assays, we uncover multiple functions of PG-1 against Aβ, including the following: (i) complete inhibition of Aβ aggregation at a low molar ratio of PG-1/Aβ = 0.25:1, (ii) disassembly of the preformed Aβ fibrils into amorphous aggregates, (iii) reduction of Aβ-induced cytotoxicity in SH-SY5Y cells and transgenic GMC101 nematodes, and (iv) preservation of original antimicrobial activity against P.A., E.coli., S.A., and S.E. strains in the presence of Aβ. Mechanistically, the dual anti-amyloid and anti-bacterial functions of PG-1 primarily arise from its strong binding to distinct Aβ seeds (KD = 1.24-1.90 μM) through conformationally similar β-sheet associations. This work introduces a promising strategy to repurpose antimicrobial peptides as amyloid inhibitors, effectively targeting multiple pathological pathways in AD.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
5
|
Mhlongo JT, Waddad AY, Albericio F, de la Torre BG. Antimicrobial Peptide Synergies for Fighting Infectious Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300472. [PMID: 37407512 PMCID: PMC10502873 DOI: 10.1002/advs.202300472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/28/2023] [Indexed: 07/07/2023]
Abstract
Antimicrobial peptides (AMPs) are essential elements of thehost defense system. Characterized by heterogenous structures and broad-spectrumaction, they are promising candidates for combating multidrug resistance. Thecombined use of AMPs with other antimicrobial agents provides a new arsenal ofdrugs with synergistic action, thereby overcoming the drawback of monotherapiesduring infections. AMPs kill microbes via pore formation, thus inhibitingintracellular functions. This mechanism of action by AMPs is an advantage overantibiotics as it hinders the development of drug resistance. The synergisticeffect of AMPs will allow the repurposing of conventional antimicrobials andenhance their clinical outcomes, reduce toxicity, and, most significantly,prevent the development of resistance. In this review, various synergies ofAMPs with antimicrobials and miscellaneous agents are discussed. The effect ofstructural diversity and chemical modification on AMP properties is firstaddressed and then different combinations that can lead to synergistic action,whether this combination is between AMPs and antimicrobials, or AMPs andmiscellaneous compounds, are attended. This review can serve as guidance whenredesigning and repurposing the use of AMPs in combination with other antimicrobialagents for enhanced clinical outcomes.
Collapse
Affiliation(s)
- Jessica T. Mhlongo
- KwaZulu‐Natal Research Innovation and Sequencing Platform (KRISP)School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
| | - Ayman Y. Waddad
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
| | - Fernando Albericio
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
- CIBER‐BBNNetworking Centre on BioengineeringBiomaterials and Nanomedicineand Department of Organic ChemistryUniversity of BarcelonaBarcelona08028Spain
| | - Beatriz G. de la Torre
- KwaZulu‐Natal Research Innovation and Sequencing Platform (KRISP)School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| |
Collapse
|
6
|
Chen D, Liu X, Chen Y, Lin H. Amyloid peptides with antimicrobial and/or microbial agglutination activity. Appl Microbiol Biotechnol 2022; 106:7711-7720. [PMID: 36322251 PMCID: PMC9628408 DOI: 10.1007/s00253-022-12246-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
Microbe (including bacteria, fungi, and virus) infection in brains is associated with amyloid fibril deposit and neurodegeneration. Increasing findings suggest that amyloid proteins, like Abeta (Aβ), are important innate immune effectors in preventing infections. In some previous studies, amyloid peptides have been linked to antimicrobial peptides due to their common mechanisms in membrane-disruption ability, while the other mechanisms of bactericidal protein aggregation and protein function knockdown are less discussed. Besides, another important function of amyloid peptides in pathogen agglutination is rarely illustrated. In this review, we summarized and divided the different roles and mechanisms of amyloid peptides against microbes in antimicrobial activity and microbe agglutination activity. Besides, the range of amyloids' antimicrobial spectrum, the effectiveness of amyloid peptide states (monomers, oligomers, and fibrils), and cytotoxicity are discussed. The good properties of amyloid peptides against microbes might provide implications for the development of novel antimicrobial drug. KEY POINTS: • Antimicrobial and/or microbial agglutination is a characteristic of amyloid peptides. • Various mechanisms of amyloid peptides against microbes are discovered recently. • Amyloid peptides might be developed into novel antimicrobial drugs.
Collapse
Affiliation(s)
- Dongru Chen
- Department of Orthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Xiangqi Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Yucong Chen
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Huancai Lin
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Baltutis V, O'Leary PD, Martin LL. Self-Assembly of Linear, Natural Antimicrobial Peptides: An Evolutionary Perspective. Chempluschem 2022; 87:e202200240. [PMID: 36198638 DOI: 10.1002/cplu.202200240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/29/2022] [Indexed: 01/31/2023]
Abstract
Antimicrobial peptides are an ancient and innate system of host defence against a wide range of microbial assailants. Mechanistically, unstructured peptides undergo a secondary structure transition into amphipathic α-helices, upon contact with membrane surfaces. This leads to peptide binding and removal of the membrane components in a detergent-like manner or via self-organisation into trans-membrane pores (either barrel-stave or toroidal pore) thereby destroying the microbe. Self-assembly of antimicrobial peptides into oligomers and ultimately amyloid has been mostly examined in parallel, however recent findings link diseases, such as Alzheimer's disease as an aberrant activity of a protective neuropeptide with antimicrobial activity. These self-assembled oligomers can also interact with membranes. Here, we review those antimicrobial peptides reported to self-assemble into amyloid, where supported by structural evidence. We consider their membrane activities as antimicrobial peptides and present evidence of consistent self-assembly patterns across major evolutionary groups. Trends are apparent across these groups, supporting the mounting data that self-assembly of antimicrobial peptides into amyloid should be considered as synergistic to the antimicrobial peptide response.
Collapse
Affiliation(s)
- Verity Baltutis
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| | - Paul D O'Leary
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| |
Collapse
|
8
|
Juhl DW, Glattard E, Aisenbrey C, Bechinger B. Antimicrobial peptides: mechanism of action and lipid-mediated synergistic interactions within membranes. Faraday Discuss 2021; 232:419-434. [PMID: 34533138 DOI: 10.1039/d0fd00041h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Biophysical and structural studies of peptide-lipid interactions, peptide topology and dynamics have changed our view of how antimicrobial peptides insert and interact with membranes. Clearly, both peptides and lipids are highly dynamic, and change and mutually adapt their conformation, membrane penetration and detailed morphology on a local and a global level. As a consequence, peptides and lipids can form a wide variety of supramolecular assemblies in which the more hydrophobic sequences preferentially, but not exclusively, adopt transmembrane alignments and have the potential to form oligomeric structures similar to those suggested by the transmembrane helical bundle model. In contrast, charged amphipathic sequences tend to stay intercalated at the membrane interface. Although the membranes are soft and can adapt, at increasing peptide density they cause pronounced disruptions of the phospholipid fatty acyl packing. At even higher local or global concentrations the peptides cause transient membrane openings, rupture and ultimately lysis. Interestingly, mixtures of peptides such as magainin 2 and PGLa, which are stored and secreted naturally as a cocktail, exhibit considerably enhanced antimicrobial activities when investigated together in antimicrobial assays and also in pore forming experiments applied to biophysical model systems. Our most recent investigations reveal that these peptides do not form stable complexes but act by specific lipid-mediated interactions and the nanoscale properties of phospholipid bilayers.
Collapse
Affiliation(s)
- Dennis W Juhl
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| | - Elise Glattard
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| | - Christopher Aisenbrey
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France. .,Institut Universitaire de France, France
| |
Collapse
|
9
|
Tang Y, Zhang D, Gong X, Zheng J. A mechanistic survey of Alzheimer's disease. Biophys Chem 2021; 281:106735. [PMID: 34894476 DOI: 10.1016/j.bpc.2021.106735] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common, age-dependent neurodegenerative disorder. While AD has been intensively studied from different aspects, there is no effective cure for AD, largely due to a lack of a clear mechanistic understanding of AD. In this mini-review, we mainly focus on the discussion and summary of mechanistic causes of Alzheimer's disease (AD). While different AD mechanisms illustrate different molecular and cellular pathways in AD pathogenesis, they do not necessarily exclude each other. Instead, some of them could work together to initiate, trigger, and promote the onset and development of AD. In a broader viewpoint, some AD mechanisms (e.g., amyloid aggregation mechanism, microbial infection/neuroinflammation mechanism, and amyloid cross-seeding mechanism) could also be applicable to other amyloid diseases including type II diabetes, Parkinson's disease, and prion disease. Such common mechanisms for AD and other amyloid diseases explain not only the pathogenesis of individual amyloid diseases, but also the spreading of pathologies between these diseases, which will inspire new strategies for therapeutic intervention and prevention for AD.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, OH, United States of America
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, OH, United States of America
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, OH, United States of America
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, OH, United States of America.
| |
Collapse
|
10
|
Cisse A, Marquette A, Altangerel M, Peters J, Bechinger B. Investigation of the Action of Peptides on Lipid Membranes. J Phys Chem B 2021; 125:10213-10223. [PMID: 34464136 DOI: 10.1021/acs.jpcb.1c06388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calorimetric and incoherent neutron scattering methods were employed to investigate the action of magainin 2 and PGLa peptides on the phase behavior and molecular dynamics of lipids mimicking cytoplasmic membranes of Gram-negative bacteria. The impact of the peptides, tested individually and cooperatively by differential scanning calorimetry, presented a broadened peak, sometimes with a second shoulder, depicting the phase transition temperature around 21 °C. Neutron scattering revealed a small but significant variation of the membrane dynamics due to the peptides in both in-plane and out-of-plane directions. Although we did not find a clear hint for synergy in the interplay of the two peptides, the calorimetric and neutron data give compatible results in terms of a decrease of the enthalpy due to the presence of the peptides, which destabilize the membrane. The dynamics in the two directions was differentiated when the individual peptides were added to the membranes, but the impact was smaller when both peptides were added together.
Collapse
Affiliation(s)
- Aline Cisse
- Univ. Grenoble-Alpes, CNRS, LiPhy, 38000 Grenoble, France.,Institut Laue-Langevin, 38000 Grenoble, France
| | - Arnaud Marquette
- University of Strasbourg/CNRS, Chemistry Institute, Membrane Biophysics and NMR, UMR7177 Strasbourg, France
| | - Munkhtuguldur Altangerel
- Univ. Grenoble-Alpes, CNRS, LiPhy, 38000 Grenoble, France.,Institut Laue-Langevin, 38000 Grenoble, France
| | - Judith Peters
- Univ. Grenoble-Alpes, CNRS, LiPhy, 38000 Grenoble, France.,Institut Laue-Langevin, 38000 Grenoble, France.,Institut Universitaire de France, 75231 Paris, France
| | - Burkhard Bechinger
- University of Strasbourg/CNRS, Chemistry Institute, Membrane Biophysics and NMR, UMR7177 Strasbourg, France.,Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
11
|
Zhang Y, Liu Y, Tang Y, Zhang D, He H, Wu J, Zheng J. Antimicrobial α-defensins as multi-target inhibitors against amyloid formation and microbial infection. Chem Sci 2021; 12:9124-9139. [PMID: 34276942 PMCID: PMC8261786 DOI: 10.1039/d1sc01133b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
Amyloid aggregation and microbial infection are considered as pathological risk factors for developing amyloid diseases, including Alzheimer's disease (AD), type II diabetes (T2D), Parkinson's disease (PD), and medullary thyroid carcinoma (MTC). Due to the multifactorial nature of amyloid diseases, single-target drugs and treatments have mostly failed to inhibit amyloid aggregation and microbial infection simultaneously, thus leading to marginal benefits for amyloid inhibition and medical treatments. Herein, we proposed and demonstrated a new "anti-amyloid and antimicrobial hypothesis" to discover two host-defense antimicrobial peptides of α-defensins containing β-rich structures (human neutrophil peptide of HNP-1 and rabbit neutrophil peptide of NP-3A), which have demonstrated multi-target, sequence-independent functions to (i) prevent the aggregation and misfolding of different amyloid proteins of amyloid-β (Aβ, associated with AD), human islet amyloid polypeptide (hIAPP, associated with T2D), and human calcitonin (hCT, associated with MTC) at sub-stoichiometric concentrations, (ii) reduce amyloid-induced cell toxicity, and (iii) retain their original antimicrobial activity upon the formation of complexes with amyloid peptides. Further structural analysis showed that the sequence-independent amyloid inhibition function of α-defensins mainly stems from their cross-interactions with amyloid proteins via β-structure interactions. The discovery of antimicrobial peptides containing β-structures to inhibit both microbial infection and amyloid aggregation greatly expands the new therapeutic potential of antimicrobial peptides as multi-target amyloid inhibitors for better understanding pathological causes and treatments of amyloid diseases.
Collapse
Affiliation(s)
- Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University Zhejiang China
| | - Jiang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University Zhejiang China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| |
Collapse
|
12
|
Marquette A, Aisenbrey C, Bechinger B. Membrane Interactions Accelerate the Self-Aggregation of Huntingtin Exon 1 Fragments in a Polyglutamine Length-Dependent Manner. Int J Mol Sci 2021; 22:ijms22136725. [PMID: 34201610 PMCID: PMC8268948 DOI: 10.3390/ijms22136725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 12/04/2022] Open
Abstract
The accumulation of aggregated protein is a typical hallmark of many human neurodegenerative disorders, including polyglutamine-related diseases such as chorea Huntington. Misfolding of the amyloidogenic proteins gives rise to self-assembled complexes and fibres. The huntingtin protein is characterised by a segment of consecutive glutamines which, when exceeding ~ 37 residues, results in the occurrence of the disease. Furthermore, it has also been demonstrated that the 17-residue amino-terminal domain of the protein (htt17), located upstream of this polyglutamine tract, strongly correlates with aggregate formation and pathology. Here, we demonstrate that membrane interactions strongly accelerate the oligomerisation and β-amyloid fibril formation of htt17-polyglutamine segments. By using a combination of biophysical approaches, the kinetics of fibre formation is investigated and found to be strongly dependent on the presence of lipids, the length of the polyQ expansion, and the polypeptide-to-lipid ratio. Finally, the implications for therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Arnaud Marquette
- Chemistry Institute UMR7177, University of Strasbourg/CNRS, 67000 Strasbourg, France; (A.M.); (C.A.)
| | - Christopher Aisenbrey
- Chemistry Institute UMR7177, University of Strasbourg/CNRS, 67000 Strasbourg, France; (A.M.); (C.A.)
| | - Burkhard Bechinger
- Chemistry Institute UMR7177, University of Strasbourg/CNRS, 67000 Strasbourg, France; (A.M.); (C.A.)
- Insitut Universitaire de France, 75005 Paris, France
- Correspondence:
| |
Collapse
|
13
|
Bechinger B, Juhl DW, Glattard E, Aisenbrey C. Revealing the Mechanisms of Synergistic Action of Two Magainin Antimicrobial Peptides. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:615494. [PMID: 35047895 PMCID: PMC8757784 DOI: 10.3389/fmedt.2020.615494] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The study of peptide-lipid and peptide-peptide interactions as well as their topology and dynamics using biophysical and structural approaches have changed our view how antimicrobial peptides work and function. It has become obvious that both the peptides and the lipids arrange in soft supramolecular arrangements which are highly dynamic and able to change and mutually adapt their conformation, membrane penetration, and detailed morphology. This can occur on a local and a global level. This review focuses on cationic amphipathic peptides of the magainin family which were studied extensively by biophysical approaches. They are found intercalated at the membrane interface where they cause membrane thinning and ultimately lysis. Interestingly, mixtures of two of those peptides namely magainin 2 and PGLa which occur naturally as a cocktail in the frog skin exhibit synergistic enhancement of antimicrobial activities when investigated together in antimicrobial assays but also in biophysical experiments with model membranes. Detailed dose-response curves, presented here for the first time, show a cooperative behavior for the individual peptides which is much increased when PGLa and magainin are added as equimolar mixture. This has important consequences for their bacterial killing activities and resistance development. In membranes that carry unsaturations both peptides align parallel to the membrane surface where they have been shown to arrange into mesophases involving the peptides and the lipids. This supramolecular structuration comes along with much-increased membrane affinities for the peptide mixture. Because this synergism is most pronounced in membranes representing the bacterial lipid composition it can potentially be used to increase the therapeutic window of pharmaceutical formulations.
Collapse
Affiliation(s)
- Burkhard Bechinger
- University of Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Dennis Wilkens Juhl
- University of Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, Strasbourg, France
| | - Elise Glattard
- University of Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, Strasbourg, France
| | - Christopher Aisenbrey
- University of Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, Strasbourg, France
| |
Collapse
|