1
|
Smetanin RV, Sukhareva MS, Vladimirova EV, Zharkova MS, Mikushina AD, Komlev AS, Khaydukova MM, Filatenkova TA, Kalganova AI, Pipiya SO, Terekhov SS, Orlov DS, Shamova OV, Eliseev IE. First vertebrate BRICHOS antimicrobial peptides: β-hairpin host defense peptides in limbless amphibia lung resemble those of marine worms. Biochem Biophys Res Commun 2024; 712-713:149913. [PMID: 38640738 DOI: 10.1016/j.bbrc.2024.149913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
Innate immunity of invertebrates offers potent antimicrobial peptides (AMPs) against drug-resistant infections. To identify new worm β-hairpin AMPs, we explored the sequence diversity of proteins with a BRICHOS domain, which comprises worm AMP precursors. Strikingly, we discovered new BRICHOS AMPs not in worms, but in caecilians, the least studied clade of vertebrates. Two precursor proteins from Microcaecilia unicolor and Rhinatrema bivittatum resemble SP-C lung surfactants and bear worm AMP-like peptides at C-termini. The analysis of M. unicolor tissue transcriptomes shows that the AMP precursor is highly expressed in the lung along with regular SP-C, suggesting a different, protective function. The peptides form right-twisted β-hairpins, change conformation upon lipid binding, and rapidly disrupt bacterial membranes. Both peptides exhibit broad-spectrum activity against multidrug-resistant ESKAPE pathogens with 1-4 μM MICs and remarkably low toxicity, giving 40-70-fold selectivity towards bacteria. These BRICHOS AMPs, previously unseen in vertebrates, reveal a novel lung innate immunity mechanism and offer a promising antibiotics template.
Collapse
Affiliation(s)
- Ruslan V Smetanin
- WCRC "Center for Personalized Medicine", Institute of Experimental Medicine, St. Petersburg, Russia; Alferov University, St. Petersburg, Russia; Institute of Bioorganic Chemistry, Moscow, Russia
| | - Maria S Sukhareva
- WCRC "Center for Personalized Medicine", Institute of Experimental Medicine, St. Petersburg, Russia
| | - Elizaveta V Vladimirova
- WCRC "Center for Personalized Medicine", Institute of Experimental Medicine, St. Petersburg, Russia
| | - Maria S Zharkova
- WCRC "Center for Personalized Medicine", Institute of Experimental Medicine, St. Petersburg, Russia
| | - Anna D Mikushina
- WCRC "Center for Personalized Medicine", Institute of Experimental Medicine, St. Petersburg, Russia; Alferov University, St. Petersburg, Russia
| | - Aleksey S Komlev
- WCRC "Center for Personalized Medicine", Institute of Experimental Medicine, St. Petersburg, Russia
| | - Maria M Khaydukova
- WCRC "Center for Personalized Medicine", Institute of Experimental Medicine, St. Petersburg, Russia
| | - Tatiana A Filatenkova
- WCRC "Center for Personalized Medicine", Institute of Experimental Medicine, St. Petersburg, Russia
| | - Anastasia I Kalganova
- Alferov University, St. Petersburg, Russia; Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | - Dmitriy S Orlov
- WCRC "Center for Personalized Medicine", Institute of Experimental Medicine, St. Petersburg, Russia
| | - Olga V Shamova
- WCRC "Center for Personalized Medicine", Institute of Experimental Medicine, St. Petersburg, Russia; St. Petersburg State University, St. Petersburg, Russia
| | - Igor E Eliseev
- WCRC "Center for Personalized Medicine", Institute of Experimental Medicine, St. Petersburg, Russia; Alferov University, St. Petersburg, Russia; Institute of Bioorganic Chemistry, Moscow, Russia.
| |
Collapse
|
2
|
Enninful GN, Kuppusamy R, Tiburu EK, Kumar N, Willcox MDP. Non-canonical amino acid bioincorporation into antimicrobial peptides and its challenges. J Pept Sci 2024; 30:e3560. [PMID: 38262069 DOI: 10.1002/psc.3560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
The rise of antimicrobial resistance and multi-drug resistant pathogens has necessitated explorations for novel antibiotic agents as the discovery of conventional antibiotics is becoming economically less viable and technically more challenging for biopharma. Antimicrobial peptides (AMPs) have emerged as a promising alternative because of their particular mode of action, broad spectrum and difficulty that microbes have in becoming resistant to them. The AMPs bacitracin, gramicidin, polymyxins and daptomycin are currently used clinically. However, their susceptibility to proteolytic degradation, toxicity profile, and complexities in large-scale manufacture have hindered their development. To improve their proteolytic stability, methods such as integrating non-canonical amino acids (ncAAs) into their peptide sequence have been adopted, which also improves their potency and spectrum of action. The benefits of ncAA incorporation have been made possible by solid-phase peptide synthesis. However, this method is not always suitable for commercial production of AMPs because of poor yield, scale-up difficulties, and its non-'green' nature. Bioincorporation of ncAA as a method of integration is an emerging field geared towards tackling the challenges of solid-phase synthesis as a green, cheaper, and scalable alternative for commercialisation of AMPs. This review focusses on the bioincorporation of ncAAs; some challenges associated with the methods are outlined, and notes are given on how to overcome these challenges. The review focusses particularly on addressing two key challenges: AMP cytotoxicity towards microbial cell factories and the uptake of ncAAs that are unfavourable to them. Overcoming these challenges will draw us closer to a greater yield and an environmentally friendly and sustainable approach to make AMPs more druggable.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- University of New South Wales, Kensington, New South Wales, Australia
| | | | - Naresh Kumar
- University of New South Wales, Kensington, New South Wales, Australia
| | - Mark D P Willcox
- University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
3
|
Kerro Dego O, Vidlund J. Staphylococcal mastitis in dairy cows. Front Vet Sci 2024; 11:1356259. [PMID: 38863450 PMCID: PMC11165426 DOI: 10.3389/fvets.2024.1356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica Vidlund
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
- East Tennessee AgResearch and Education Center-Little River Animal and Environmental Unit, University of Tennessee, Walland, TN, United States
| |
Collapse
|
4
|
Garvey M. Antimicrobial Peptides Demonstrate Activity against Resistant Bacterial Pathogens. Infect Dis Rep 2023; 15:454-469. [PMID: 37623050 PMCID: PMC10454446 DOI: 10.3390/idr15040046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
The antimicrobial resistance crisis is an ongoing major threat to public health safety. Low- and middle-income countries are particularly susceptible to higher fatality rates and the economic impact of antimicrobial resistance (AMR). As an increasing number of pathogens emerge with multi- and pan-drug resistance to last-resort antibiotics, there is an urgent need to provide alternative antibacterial options to mitigate disease transmission, morbidity, and mortality. As identified by the World Health Organization (WHO), critically important pathogens such as Klebsiella and Pseudomonas species are becoming resistant to last-resort antibiotics including colistin while being frequently isolated from clinical cases of infection. Antimicrobial peptides are potent amino acid sequences produced by many life forms from prokaryotic, fungal, plant, to animal species. These peptides have many advantages, including their multi-hit mode of action, potency, and rapid onset of action with low levels of resistance being evident. These innate defense mechanisms also have an immune-stimulating action among other activities in vivo, thus making them ideal therapeutic options. Large-scale production and formulation issues (pharmacokinetics, pharmacodynamics), high cost, and protease instability hinder their mass production and limit their clinical application. This review outlines the potential of these peptides to act as therapeutic agents in the treatment of multidrug-resistant infections considering the mode of action, resistance, and formulation aspects. Clinically relevant Gram-positive and Gram-negative pathogens are highlighted according to the WHO priority pathogen list.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91YW50 Sligo, Ireland
| |
Collapse
|
5
|
Golubeva OY, Alikina YA, Brazovskaya EY, Vasilenko NM. Hemolytic Activity and Cytotoxicity of Synthetic Nanoclays with Montmorillonite Structure for Medical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091470. [PMID: 37177015 PMCID: PMC10180290 DOI: 10.3390/nano13091470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
The factors influencing the appearance of toxicity in samples of synthetic montmorillonite with a systematically changing chemical composition Nax(Al, Mg)2-3Si4O10(OH)2 nH2O, which are potentially important for their use in medicine as drug carriers, targeted drug delivery systems, entero- and hemosorbents have been studied. Samples synthesized under hydrothermal conditions had the morphology of nanolayers self-organized into the nanosponge structures. The effect of the aluminum content, particle sizes, porosity, and ζ-potential of the samples on their toxicity was studied. The cytotoxic effect of the samples on eukaryotic cells Ea. hy 926 was determined using the MTT assay. The hemolytic activity of the samples in the wide concentration range in relation to human erythrocytes was also estimated. It has been established that the toxicity of aluminosilicate nanoparticles can be significantly reduced by correctly selecting their synthesis conditions and chemical composition, which opens up the opportunities for their use in medicine.
Collapse
Affiliation(s)
- Olga Yu Golubeva
- Laboratory of Silicate Sorbents Chemistry, Institute of Silicate Chemistry of Russian Academy of Sciences, Adm. Makarova emb., 2, 199034 St. Petersburg, Russia
| | - Yulia A Alikina
- Laboratory of Silicate Sorbents Chemistry, Institute of Silicate Chemistry of Russian Academy of Sciences, Adm. Makarova emb., 2, 199034 St. Petersburg, Russia
| | - Elena Yu Brazovskaya
- Laboratory of Silicate Sorbents Chemistry, Institute of Silicate Chemistry of Russian Academy of Sciences, Adm. Makarova emb., 2, 199034 St. Petersburg, Russia
| | - Nadezhda M Vasilenko
- Laboratory of Silicate Sorbents Chemistry, Institute of Silicate Chemistry of Russian Academy of Sciences, Adm. Makarova emb., 2, 199034 St. Petersburg, Russia
| |
Collapse
|
6
|
Novel Arginine- and Proline-Rich Candidacidal Peptides Obtained through a Bioinformatic Approach. Antibiotics (Basel) 2023; 12:antibiotics12030472. [PMID: 36978339 PMCID: PMC10044544 DOI: 10.3390/antibiotics12030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Antimicrobial resistance is a major public health concern worldwide. Albeit to a lesser extent than bacteria, fungi are also becoming increasingly resistant to antifungal drugs. Moreover, due to the small number of antifungal classes, therapy options are limited, complicating the clinical management of mycoses. In this view, antimicrobial peptides (AMPs) are a potential alternative to conventional drugs. Among these, Proline-rich antimicrobial peptides (PrAMPs), almost exclusively of animal origins, are of particular interest due to their peculiar mode of action. In this study, a search for new arginine- and proline-rich peptides from plants has been carried out with a bioinformatic approach by sequence alignment and antimicrobial prediction tools. Two peptide candidates were tested against planktonic cells and biofilms of Candida albicans and Candida glabrata strains, including resistant isolates. These peptides showed similar potent activity, with half-maximal effective concentration values in the micromolar range. In addition, some structural and functional features, revealing peculiar mechanistic behaviors, were investigated.
Collapse
|
7
|
Zharkova MS, Komlev AS, Filatenkova TA, Sukhareva MS, Vladimirova EV, Trulioff AS, Orlov DS, Dmitriev AV, Afinogenova AG, Spiridonova AA, Shamova OV. Combined Use of Antimicrobial Peptides with Antiseptics against Multidrug-Resistant Bacteria: Pros and Cons. Pharmaceutics 2023; 15:291. [PMID: 36678918 PMCID: PMC9863607 DOI: 10.3390/pharmaceutics15010291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial peptides (AMPs) are acknowledged as a promising template for designing new antimicrobials. At the same time, existing toxicity issues and limitations in their pharmacokinetics make topical application one of the less complicated routes to put AMPs-based therapeutics into actual medical practice. Antiseptics are one of the common components for topical treatment potent against antibiotic-resistant pathogens but often with toxicity limitations of their own. Thus, the interaction of AMPs and antiseptics is an interesting topic that is also less explored than combined action of AMPs and antibiotics. Herein, we analyzed antibacterial, antibiofilm, and cytotoxic activity of combinations of both membranolytic and non-membranolytic AMPs with a number of antiseptic agents. Fractional concentration indices were used as a measure of possible effective concentration reduction achievable due to combined application. Cases of both synergistic and antagonistic interaction with certain antiseptics and surfactants were identified, and trends in the occurrence of these types of interaction were discussed. The data may be of use for AMP-based drug development and suggest that the topic requires further attention for successfully integrating AMPs-based products in the context of complex treatment. AMP/antiseptic combinations show promise for creating topical formulations with improved activity, lowered toxicity, and, presumably, decreased chances of inducing bacterial resistance. However, careful assessment is required to avoid AMP neutralization by certain antiseptic classes in either complex drug design or AMP application alongside other therapeutics/care products.
Collapse
Affiliation(s)
- Maria S. Zharkova
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Aleksey S. Komlev
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Tatiana A. Filatenkova
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Maria S. Sukhareva
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Elizaveta V. Vladimirova
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Andrey S. Trulioff
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Dmitriy S. Orlov
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Alexander V. Dmitriev
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Anna G. Afinogenova
- St. Petersburg Pasteur Institute, 14 Mira Street, St. Petersburg 197101, Russia
| | - Anna A. Spiridonova
- Department of Clinical Microbiology, Pavlov First Saint Petersburg State Medical University, 6/8 Lev Tolstoy Street, St. Petersburg 197022, Russia
| | - Olga V. Shamova
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
- Department of Biochemistry, Saint Petersburg State University, 7/9 Universitetskaya Embankment, St. Petersburg 199034, Russia
| |
Collapse
|
8
|
Particles Morphology Impact on Cytotoxicity, Hemolytic Activity and Sorption Properties of Porous Aluminosilicates of Kaolinite Group. NANOMATERIALS 2022; 12:nano12152559. [PMID: 35893527 PMCID: PMC9332423 DOI: 10.3390/nano12152559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
A comparative study of the properties of aluminosilicates of the kaolinite (Al2Si2O5(OH)4∙nH2O) group with different particles morphology has been carried out. Under conditions of directed hydrothermal synthesis, kaolinite nanoparticles with spherical, sponge, and platy morphologies were obtained. Raw nanotubular halloysite was used as particles with tubular morphology. The samples were studied by X-ray diffraction, SEM, solid-state NMR, low-temperature nitrogen adsorption, and the dependence of the zeta potential of the samples on the pH of the medium was defined. The sorption capacity with respect to cationic dye methylene blue in aqueous solutions was studied. It was found that sorption capacity depends on particles morphology and decreases in the series spheres-sponges-tubes-plates. The Langmuir, Freundlich, and Temkin models describe experimental methylene blue adsorption isotherms on aluminosilicates of the kaolinite subgroup with different particles morphology. To process the kinetic data, pseudo-first order and pseudo-second order were used. For the first time, studies of the dependence of hemolytic activity and cytotoxicity of aluminosilicate nanoparticles on their morphology were carried out. It was found that aluminosilicate nanosponges and spherical particles are not toxic to human erythrocytes and do not cause their destruction at sample concentrations from 0.1 to 1 mg/g. Based on the results of the MTT test, the concentration value that causes 50% inhibition of cell population growth (IC50, mg/mL) was calculated. For nanotubes, this value turned out to be the smallest—0.33 mg/mL. For samples with platy, spherical and nanosponge morphology, the IC50 values were 1.55, 2.68, and 4.69 mg/mL, respectively.
Collapse
|
9
|
Panteleev PV, Safronova VN, Kruglikov RN, Bolosov IA, Bogdanov IV, Ovchinnikova TV. A Novel Proline-Rich Cathelicidin from the Alpaca Vicugna pacos with Potency to Combat Antibiotic-Resistant Bacteria: Mechanism of Action and the Functional Role of the C-Terminal Region. MEMBRANES 2022; 12:membranes12050515. [PMID: 35629841 PMCID: PMC9146984 DOI: 10.3390/membranes12050515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023]
Abstract
Over recent years, a growing number of bacterial species have become resistant to clinically relevant antibiotics. Proline-rich antimicrobial peptides (PrAMPs) having a potent antimicrobial activity and a negligible toxicity toward mammalian cells attract attention as new templates for the development of antibiotic drugs. Here, we mined genomes of all living Camelidae species and found a novel family of Bac7-like proline-rich cathelicidins which inhibited bacterial protein synthesis. The N-terminal region of a novel peptide from the alpaca Vicugna pacos named VicBac is responsible for inhibition of bacterial protein synthesis with an IC50 value of 0.5 µM in the E. coli cell-free system whereas the C-terminal region allows the peptide to penetrate bacterial membranes effectively. We also found that the full-length VicBac did not induce bacterial resistance after a two-week selection experiment, unlike the N-terminal truncated analog, which depended on the SbmA transport system. Both pro- and anti-inflammatory action of VicBac and its N-terminal truncated variant on various human cell types was found by multiplex immunoassay. The presence of the C-terminal tail in the natural VicBac does not provide for specific immune-modulatory effects in vitro but enhances the observed impact compared with the truncated analog. The pronounced antibacterial activity of VicBac, along with its moderate adverse effects on mammalian cells, make this molecule a promising scaffold for the development of peptide antibiotics.
Collapse
|
10
|
Zharkova MS, Golubeva OY, Orlov DS, Vladimirova EV, Dmitriev AV, Tossi A, Shamova OV. Silver Nanoparticles Functionalized With Antimicrobial Polypeptides: Benefits and Possible Pitfalls of a Novel Anti-infective Tool. Front Microbiol 2021; 12:750556. [PMID: 34975782 PMCID: PMC8719061 DOI: 10.3389/fmicb.2021.750556] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Silver nanoparticles (AgNPs) and antimicrobial peptides or proteins (AMPs/APs) are both considered as promising platforms for the development of novel therapeutic agents effective against the growing number of drug-resistant pathogens. The observed synergy of their antibacterial activity suggested the prospect of introducing antimicrobial peptides or small antimicrobial proteins into the gelatinized coating of AgNPs. Conjugates with protegrin-1, indolicidin, protamine, histones, and lysozyme were comparatively tested for their antibacterial properties and compared with unconjugated nanoparticles and antimicrobial polypeptides alone. Their toxic effects were similarly tested against both normal eukaryotic cells (human erythrocytes, peripheral blood mononuclear cells, neutrophils, and dermal fibroblasts) and tumor cells (human erythromyeloid leukemia K562 and human histiocytic lymphoma U937 cell lines). The AMPs/APs retained their ability to enhance the antibacterial activity of AgNPs against both Gram-positive and Gram-negative bacteria, including drug-resistant strains, when conjugated to the AgNP surface. The small, membranolytic protegrin-1 was the most efficient, suggesting that a short, rigid structure is not a limiting factor despite the constraints imposed by binding to the nanoparticle. Some of the conjugated AMPs/APs clearly affected the ability of nanoparticle to permeabilize the outer membrane of Escherichia coli, but none of the conjugated AgNPs acquired the capacity to permeabilize its cytoplasmic membrane, regardless of the membranolytic potency of the bound polypeptide. Low hemolytic activity was also found for all AgNP-AMP/AP conjugates, regardless of the hemolytic activity of the free polypeptides, making conjugation a promising strategy not only to enhance their antimicrobial potential but also to effectively reduce the toxicity of membranolytic AMPs. The observation that metabolic processes and O2 consumption in bacteria were efficiently inhibited by all forms of AgNPs is the most likely explanation for their rapid and bactericidal action. AMP-dependent properties in the activity pattern of various conjugates toward eukaryotic cells suggest that immunomodulatory, wound-healing, and other effects of the polypeptides are at least partially transferred to the nanoparticles, so that functionalization of AgNPs may have effects beyond just modulation of direct antibacterial activity. In addition, some conjugated nanoparticles are selectively toxic to tumor cells. However, caution is required as not all modulatory effects are necessarily beneficial to normal host cells.
Collapse
Affiliation(s)
- Maria S. Zharkova
- World-Class Research Center “Center for Personalized Medicine”, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Olga Yu. Golubeva
- Laboratory of the Nanostructures Research, Institute of Silicate Chemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Dmitriy S. Orlov
- World-Class Research Center “Center for Personalized Medicine”, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Elizaveta V. Vladimirova
- World-Class Research Center “Center for Personalized Medicine”, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexander V. Dmitriev
- World-Class Research Center “Center for Personalized Medicine”, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Olga V. Shamova
- World-Class Research Center “Center for Personalized Medicine”, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
11
|
Golubeva OY, Alikina YA, Khamova TV, Vladimirova EV, Shamova OV. Aluminosilicate Nanosponges: Synthesis, Properties, and Application Prospects. Inorg Chem 2021; 60:17008-17018. [PMID: 34723488 DOI: 10.1021/acs.inorgchem.1c02122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A simple one-step method is presented for fabricating inorganic nanosponges with a kaolinite [Al2Si2O5(OH)4] structure. The nanosponges were synthesized by the hydrothermal treatment of aluminosilicate gels in an acidic medium (pH = 2.6) at 220 °C without using organic cross-linking agents, such as cyclodextrin or polymers. The formation of the nanosponge morphology was confirmed by scanning electron microscopy, and the assignment of the synthesized aluminosilicates to the kaolinite group was confirmed by X-ray diffraction and infrared spectroscopy. The effect of the synthesis conditions, in particular, the nature (HCl, HF, NaOH, and H2O) and pH of the reaction medium (2.6, 7, and 12), as well as the duration of the synthesis (3, 6, and 12 days), on the morphology of aluminosilicates of the kaolinite group was studied. The sorption capacity of aluminosilicate nanosponges with respect to cationic (e.g., methylene blue) and anionic (e.g., azorubine) dyes in aqueous solutions was studied. The pH sensitivity of the surface ζ potential of the synthesized nanosponges was demonstrated. The dependence of the hemolytic activity (the ability to destroy erythrocytes) of aluminosilicate nanoparticles on the particle morphology (platy, spherical, and nanosponge) has been identified for the first time. Aluminosilicate nanosponges were not found to exhibit hemolytic activity. The prospects of using aluminosilicate nanosponges to prepare innovative functional materials for ecology and medicine applications, in particular, as matrices for drug delivery systems, were identified.
Collapse
Affiliation(s)
- Olga Yu Golubeva
- Laboratory of the Nanostructures Research, Institute of Silicate Chemistry, Russian Academy of Sciences, Adm. Makarova Emb., 2, St. Petersburg 199034, Russia
| | - Yulia A Alikina
- Laboratory of the Nanostructures Research, Institute of Silicate Chemistry, Russian Academy of Sciences, Adm. Makarova Emb., 2, St. Petersburg 199034, Russia
| | - Tamara V Khamova
- Laboratory of the Nanostructures Research, Institute of Silicate Chemistry, Russian Academy of Sciences, Adm. Makarova Emb., 2, St. Petersburg 199034, Russia
| | - Elizaveta V Vladimirova
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, Academic Pavlov Str., 12, St. Petersburg 197376, Russia
| | - Olga V Shamova
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, Academic Pavlov Str., 12, St. Petersburg 197376, Russia
| |
Collapse
|
12
|
Armas F, Di Stasi A, Mardirossian M, Romani AA, Benincasa M, Scocchi M. Effects of Lipidation on a Proline-Rich Antibacterial Peptide. Int J Mol Sci 2021; 22:7959. [PMID: 34360723 PMCID: PMC8347091 DOI: 10.3390/ijms22157959] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2023] Open
Abstract
The emergence of multidrug-resistant bacteria is a worldwide health problem. Antimicrobial peptides have been recognized as potential alternatives to conventional antibiotics, but still require optimization. The proline-rich antimicrobial peptide Bac7(1-16) is active against only a limited number of Gram-negative bacteria. It kills bacteria by inhibiting protein synthesis after its internalization, which is mainly supported by the bacterial transporter SbmA. In this study, we tested two different lipidated forms of Bac7(1-16) with the aim of extending its activity against those bacterial species that lack SbmA. We linked a C12-alkyl chain or an ultrashort cationic lipopeptide Lp-I to the C-terminus of Bac7(1-16). Both the lipidated Bac-C12 and Bac-Lp-I forms acquired activity at low micromolar MIC values against several Gram-positive and Gram-negative bacteria. Moreover, unlike Bac7(1-16), Bac-C12, and Bac-Lp-I did not select resistant mutants in E. coli after 14 times of exposure to sub-MIC concentrations of the respective peptide. We demonstrated that the extended spectrum of activity and absence of de novo resistance are likely related to the acquired capability of the peptides to permeabilize cell membranes. These results indicate that C-terminal lipidation of a short proline-rich peptide profoundly alters its function and mode of action and provides useful insights into the design of novel broad-spectrum antibacterial agents.
Collapse
Affiliation(s)
- Federica Armas
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (A.D.S.); (M.M.); (M.B.)
- Area Science Park, Padriciano, 34149 Trieste, Italy
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Adriana Di Stasi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (A.D.S.); (M.M.); (M.B.)
| | - Mario Mardirossian
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (A.D.S.); (M.M.); (M.B.)
- Department of Medical Sciences, University of Trieste, 34129 Trieste, Italy
| | | | - Monica Benincasa
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (A.D.S.); (M.M.); (M.B.)
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (A.D.S.); (M.M.); (M.B.)
| |
Collapse
|