1
|
Li P, Zhang H, Dai M. Current status and prospect of gut and oral microbiome in pancreatic cancer: Clinical and translational perspectives. Cancer Lett 2024; 604:217274. [PMID: 39307411 DOI: 10.1016/j.canlet.2024.217274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Pancreatic cancer is a highly lethal malignancy, and its diagnosis and treatment continue to pose significant challenges. Despite advancements in surgical and comprehensive treatment methods, the five-year survival rate remains below 12 %. With the rapid development of microbiome science, the gut and oral microbiota, which are readily accessible and can be sampled non-invasively, have emerged as a novel area of interest in pancreatic cancer research. Dysbiosis in these microbial communities can induce persistent inflammatory responses and affect the host's immune system, promoting cancer development and impacting the efficacy of treatments like chemotherapy and immunotherapy. This review provides an up-to-date overview of the roles of both gut and oral microbiota in the onset, progression, diagnosis, and treatment of pancreatic cancer. It analyzes the potential of utilizing these microbiomes as biomarkers and therapeutic targets from a clinical application perspective. Furthermore, it discusses future research directions aimed at harnessing these insights to advance the diagnosis and treatment strategies for pancreatic cancer. By focusing on the microbiome's role in clinical and translational medicine, this review offers insights into improving pancreatic cancer diagnosis and treatment outcomes.
Collapse
Affiliation(s)
- Pengyu Li
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hanyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Hu Y, Zhou P, Deng K, Zhou Y, Hu K. Targeting the gut microbiota: a new strategy for colorectal cancer treatment. J Transl Med 2024; 22:915. [PMID: 39379983 PMCID: PMC11460241 DOI: 10.1186/s12967-024-05671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND How to reduce the high incidence rate and mortality of colorectal cancer (CRC) effectively is the focus of current research. Endoscopic treatment of early-stage CRC and colorectal adenomas (CAC) has a high success rate, but although several treatments are available for advanced CRC, such as surgery, radiotherapy, chemotherapy, and immunotherapy, the 5-year survival rate remains low. In view of the high incidence rate and mortality of CRC, early rational drug prevention for high-risk groups and exploration of alternative treatment modalities are particularly warranted. Gut microbiota is the target of and interacts with probiotics, prebiotics, aspirin, metformin, and various Chinese herbal medicines (CHMs) for the prevention of CRC. In addition, the anti-cancer mechanisms of probiotics differ widely among bacterial strains, and both bacterial strains and their derivatives and metabolites have been found to have anti-cancer effects. Gut microbiota plays a significant role in early drug prevention of CRC and treatment of CRC in its middle and late stages, targeting gut microbiota may be a new strategy for colorectal cancer treatment.
Collapse
Affiliation(s)
- Yue Hu
- Health Science Center, Ningbo University, Ningbo, China
| | - Peng Zhou
- Health Science Center, Ningbo University, Ningbo, China
| | - Kaili Deng
- Health Science Center, Ningbo University, Ningbo, China
| | - Yuping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
- Institute of Digestive Disease of Ningbo University, Ningbo, China.
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo, China.
| | - Kefeng Hu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
Davoutis E, Gkiafi Z, Lykoudis PM. Bringing gut microbiota into the spotlight of clinical research and medical practice. World J Clin Cases 2024; 12:2293-2300. [PMID: 38765739 PMCID: PMC11099419 DOI: 10.12998/wjcc.v12.i14.2293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024] Open
Abstract
Despite the increasing scientific interest and expanding role of gut microbiota (GM) in human health, it is rarely reported in case reports and deployed in clinical practice. Proteins and metabolites produced by microbiota contribute to immune system development, energy homeostasis and digestion. Exo- and endogenous factors can alter its composition. Disturbance of microbiota, also known as dysbiosis, is associated with various pathological conditions. Specific bacterial taxa and related metabolites are involved in disease pathogenesis and therefore can serve as a diagnostic tool. GM could also be a useful prognostic factor by predicting future disease onset and preventing hospital-associated infections. Additionally, it can influence response to treatments, including those for cancers, by altering drug bioavailability. A thorough understanding of its function has permitted significant development in therapeutics, such as probiotics and fecal transplantation. Hence, GM should be considered as a ground-breaking biological parameter, and it is advisable to be investigated and reported in literature in a more consistent and systematic way.
Collapse
Affiliation(s)
- Efstathia Davoutis
- School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Zoi Gkiafi
- School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagis M Lykoudis
- School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
4
|
Ciernikova S, Sevcikova A, Mladosievicova B, Mego M. Microbiome in Cancer Development and Treatment. Microorganisms 2023; 12:24. [PMID: 38257851 PMCID: PMC10819529 DOI: 10.3390/microorganisms12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Targeting the microbiome, microbiota-derived metabolites, and related pathways represents a significant challenge in oncology. Microbiome analyses have confirmed the negative impact of cancer treatment on gut homeostasis, resulting in acute dysbiosis and severe complications, including massive inflammatory immune response, mucosal barrier disruption, and bacterial translocation across the gut epithelium. Moreover, recent studies revealed the relationship between an imbalance in the gut microbiome and treatment-related toxicity. In this review, we provide current insights into the role of the microbiome in tumor development and the impact of gut and tumor microbiomes on chemo- and immunotherapy efficacy, as well as treatment-induced late effects, including cognitive impairment and cardiotoxicity. As discussed, microbiota modulation via probiotic supplementation and fecal microbiota transplantation represents a new trend in cancer patient care, aiming to increase bacterial diversity, alleviate acute and long-term treatment-induced toxicity, and improve the response to various treatment modalities. However, a more detailed understanding of the complex relationship between the microbiome and host can significantly contribute to integrating a microbiome-based approach into clinical practice. Determination of causal correlations might lead to the identification of clinically relevant diagnostic and prognostic microbial biomarkers. Notably, restoration of intestinal homeostasis could contribute to optimizing treatment efficacy and improving cancer patient outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Beata Mladosievicova
- Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia;
| |
Collapse
|
5
|
Sun L, Qu J, Ke X, Zhang Y, Xu H, Lv N, Leng J, Zhang Y, Guan A, Feng Y, Sun Y. Interaction between intratumoral microbiota and tumor mediates the response of neoadjuvant therapy for rectal cancer. Front Microbiol 2023; 14:1229888. [PMID: 37901832 PMCID: PMC10602640 DOI: 10.3389/fmicb.2023.1229888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Background Previous observations have demonstrated that the response to neoadjuvant chemoradiotherapy (nCRT) is highly variable in patients with locally advanced rectal cancer (LARC). Recent studies focusing on the intratumoral microbiota of colorectal cancer have revealed its role in oncogenesis and tumor progression. However, limited research has focused on the influence of intratumoral microbiota on the nCRT of LARC. Methods We explored the microbial profiles in the tumor microenvironment of LARC using RNA-seq data from a published European cohort. Microbial signatures were characterized in pathological complete response (pCR) and non-pCR groups. Multi-omics analysis was performed between intratumor microbiomes and transcriptomes. Results Microbial α and β diversity were significantly different in pCR and non-pCR groups. Twelve differential microbes were discovered between the pCR and non-pCR groups, six of which were related to subclusters of cancer-associated fibroblasts (CAFs) associated with extracellular matrix formation. A microbial risk score based on the relative abundance of seven differential microbes had predictive value for the nCRT response (AUC = 0.820, p < 0.001). Conclusion Our study presents intratumoral microbes as potential independent predictive markers for the response of nCRT to LARC and demonstrates the underlying mechanism by which the interaction between intratumoral microbes and CAFs mediates the response to nCRT.
Collapse
Affiliation(s)
- Lejia Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Jiangming Qu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xindi Ke
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Hengyi Xu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ning Lv
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jingze Leng
- School of Medicine, Tsinghua University, Beijing, China
| | - Yanbin Zhang
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Ai Guan
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yifei Feng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Yueming Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Colorectal Institute of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Yao D, He W, Hu Y, Yuan Y, Xu H, Wang J, Dai H. Prevalence and influencing factors of probiotic usage among colorectal cancer patients in China: A national database study. PLoS One 2023; 18:e0291864. [PMID: 37733795 PMCID: PMC10513277 DOI: 10.1371/journal.pone.0291864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Probiotics have become increasingly popular among cancer patients. However, there is limited data from a real-world setting. This study aims to conduct a retrospective analysis to understand the trend of probiotic prescriptions in Chinese colorectal cancer patients. The Mann-Kendall and Cochran-Armitage trend test was applied to estimate the trend significance. Gephi software identified the combination of probiotic strains. The binary logistic regression investigated influence factors, and Spearman's rank correlation coefficient calculated correlations between probiotics and antitumor drug usage. The probiotic prescription percentage increased from 3.3% in 2015 to 4.2% in 2021 (Z = 12.77, p < 0.001). Although 48.3% of probiotic prescriptions had no indication-related diagnosis, diarrhea (OR 10.91, 95% CI 10.57-11.26) and dyspepsia (3.97, 3.82-4.12) included prescriptions most likely to contain probiotics. Prescriptions from the tertiary hospital (1.43,1.36-1.50), clinics (1.30, 1.28-1.33), and senior patients (1.018 per year, 1.017-1.019) were more likely to contain probiotics. Most probiotic prescriptions (95.0%) contained one probiotic product but multiple strains (69.3%). Enterococcus faecalis (49.7%), Lactobacillus acidophilus (39.4%), and Clostridium butyricum (27.9%) were the most prescribed strains. The probiotics co-prescribed with antitumor agents increased rapidly from 6.6% to 13.8% in seven years (Z = 15.31, p < 0.001). Oral fluorouracil agents (2.35, 2.14-2.59), regorafenib (1.70,1.27-2.26), and irinotecan (1.27,1.15-1.41) had a higher probability to co-prescribed with probiotics. There was no correlation between probiotic strain selection and specific antitumor drug use. The increasing prescription of probiotics in colorectal cancer patients in China may be related to treating the gastrointestinal toxicity of anti-cancer drugs. With unapproved indications and a lack of strain selectivity, evidence-based guidelines are urgently needed to improve probiotic use in this population.
Collapse
Affiliation(s)
- Difei Yao
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei He
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yangmin Hu
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, Cancer Institute, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huimin Xu
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Juan Wang
- Department of Medical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haibin Dai
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Aitmanaitė L, Širmonaitis K, Russo G. Microbiomes, Their Function, and Cancer: How Metatranscriptomics Can Close the Knowledge Gap. Int J Mol Sci 2023; 24:13786. [PMID: 37762088 PMCID: PMC10531294 DOI: 10.3390/ijms241813786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The interaction between the microbial communities in the human body and the onset and progression of cancer has not been investigated until recently. The vast majority of the metagenomics research in this area has concentrated on the composition of microbiomes, attempting to link the overabundance or depletion of certain microorganisms to cancer proliferation, metastatic behaviour, and its resistance to therapies. However, studies elucidating the functional implications of the microbiome activity in cancer patients are still scarce; in particular, there is an overwhelming lack of studies assessing such implications directly, through analysis of the transcriptome of the bacterial community. This review summarises the contributions of metagenomics and metatranscriptomics to the knowledge of the microbial environment associated with several cancers; most importantly, it highlights all the advantages that metatranscriptomics has over metagenomics and suggests how such an approach can be leveraged to advance the knowledge of the cancer bacterial environment.
Collapse
Affiliation(s)
| | | | - Giancarlo Russo
- EMBL Partnership Institute for Gene Editing, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (L.A.); (K.Š.)
| |
Collapse
|
8
|
Maddern AS, Coller JK, Bowen JM, Gibson RJ. The Association between the Gut Microbiome and Development and Progression of Cancer Treatment Adverse Effects. Cancers (Basel) 2023; 15:4301. [PMID: 37686576 PMCID: PMC10487104 DOI: 10.3390/cancers15174301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Adverse effects are a common consequence of cytotoxic cancer treatments. Over the last two decades there have been significant advances in exploring the relationship between the gut microbiome and these adverse effects. Changes in the gut microbiome were shown in multiple clinical studies to be associated with the development of acute gastrointestinal adverse effects, including diarrhoea and mucositis. However, more recent studies showed that changes in the gut microbiome may also be associated with the long-term development of psychoneurological changes, cancer cachexia, and fatigue. Therefore, the aim of this review was to examine the literature to identify potential contributions and associations of the gut microbiome with the wide range of adverse effects from cytotoxic cancer treatments.
Collapse
Affiliation(s)
- Amanda S. Maddern
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Janet K. Coller
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (J.K.C.); (J.M.B.)
| | - Joanne M. Bowen
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (J.K.C.); (J.M.B.)
| | - Rachel J. Gibson
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
9
|
Kulecka M, Zeber-Lubecka N, Bałabas A, Czarnowski P, Bagińska K, Głowienka M, Kluska A, Piątkowska M, Dąbrowska M, Waker E, Mikula M, Ostrowski J. Diarrheal-associated gut dysbiosis in cancer and inflammatory bowel disease patients is exacerbated by Clostridioides difficile infection. Front Cell Infect Microbiol 2023; 13:1190910. [PMID: 37577378 PMCID: PMC10413277 DOI: 10.3389/fcimb.2023.1190910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Low diversity gut dysbiosis can take different forms depending on the disease context. In this study, we used shotgun metagenomic sequencing and gas chromatography-mass spectrometry (GC-MS) to compared the metagenomic and metabolomic profiles of Clostridioides (Clostridium) difficile diarrheal cancer and inflammatory bowel disease (IBD) patients and defined the additive effect of C. difficile infection (CDI) on intestinal dysbiosis. Results The study cohort consisted of 138 case-mix cancer patients, 43 IBD patients, and 45 healthy control individuals. Thirty-three patients were also infected with C. difficile. In the control group, three well-known enterotypes were identified, while the other groups presented with an additional Escherichia-driven enterotype. Bacterial diversity was significantly lower in all groups than in healthy controls, while the highest level of bacterial species richness was observed in cancer patients. Fifty-six bacterial species had abundance levels that differentiated diarrheal patient groups from the control group. Of these species, 52 and 4 (Bacteroides fragilis, Escherichia coli, Klebsiella pneumoniae, and Ruminococcus gnavus) were under-represented and over-represented, respectively, in all diarrheal patient groups. The relative abundances of propionate and butyrate were significantly lower in fecal samples from IBD and CDI patients than in control samples. Isobutyrate, propanate, and butyrate concentrations were lower in cancer, IBD, and CDI samples, respectively. Glycine and valine amino acids were over- represented in diarrheal patients. Conclusion Our data indicate that different external and internal factors drive comparable profiles of low diversity dysbiosis. While diarrheal-related low diversity dysbiosis may be a consequence of systemic cancer therapy, a similar phenotype is observed in cases of moderate to severe IBD, and in both cases, dysbiosis is exacerbated by incidence of CDI.
Collapse
Affiliation(s)
- Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paweł Czarnowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Katarzyna Bagińska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Głowienka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Piątkowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Edyta Waker
- Department of Clinical Microbiology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
10
|
Gonzalez-Mercado VJ, Lim J, Aouizerat B. Insights from Bacterial 16S rRNA Gene into Bacterial Genera and Predicted Metabolic Pathways Associated with Stool Consistency in Rectal Cancer Patients: A Proof of Concept. Biol Res Nurs 2023; 25:491-500. [PMID: 36859821 PMCID: PMC10404905 DOI: 10.1177/10998004231159623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
PURPOSE To examine if gut microbial taxa abundances and predicted functional pathways correlate with Bristol Stool Form Scale (BSFS) classification at the end of neoadjuvant chemotherapy and radiation therapy (CRT) for rectal cancer. METHODS Rectal cancer patients (n = 39) provided stool samples for 16S rRNA gene sequencing. Stool consistency was evaluated using the BSFS. Gut microbiome data were analyzed using QIIME2. Correlation analysis were performed in R. RESULTS At the genus level, Staphylococcus positively correlates (Spearman's rho = 0.26), while Anaerofustis, Roseburia, Peptostreptococcaceae unclassified, Ruminococcaceae UBA1819, Shuttleworthia, Ca. Soleaferrea, Anaerostignum, Oscillibacter, and Akkermansia negatively correlate with BSFS scores (Spearman's rho -0.20 to -0.42). Predicted pathways, including mycothiol biosynthesis and sucrose degradation III (sucrose invertase), were positively correlated with BSFS (Spearman's rho = 0.03-0.21). CONCLUSION The data support that in rectal cancer patients, stool consistency is an important factor to include in microbiome studies. Loose/liquid stools may be linked to Staphylococcus abundance and to mycothiol biosynthesis and sucrose degradation pathways.
Collapse
Affiliation(s)
| | - Jean Lim
- University of South Florida Tampa Campus, Tampa, FL, USA
| | - Bradley Aouizerat
- Department of Oral and Maxillofacial Surgery, New York University, New York, NY, USA
| |
Collapse
|
11
|
Fernandes A, Oliveira A, Carvalho AL, Soares R, Barata P. Faecalibacterium prausnitzii in Differentiated Thyroid Cancer Patients Treated with Radioiodine. Nutrients 2023; 15:2680. [PMID: 37375584 DOI: 10.3390/nu15122680] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Faecalibacterium prausnitzii, one of the most important bacteria of the human gut microbiota, produces butyrate (a short-chain fatty acid). Short-chain fatty acids are known to influence thyroid physiology and thyroid cancer's response to treatment. We aimed to analyze the relative abundance of Faecalibacterium prausnitzii on the gut microbiota of differentiated thyroid cancer patients compared to controls and its variation after radioiodine therapy (RAIT). METHODS Fecal samples were collected from 37 patients diagnosed with differentiated thyroid cancer before and after radioiodine therapy and from 10 volunteers. The abundance of F. prausnitzii was determined using shotgun metagenomics. RESULTS Our study found that the relative abundance of F. prausnitzii is significantly reduced in thyroid cancer patients compared to volunteers. We also found that there was a mixed response to RAIT, with an increase in the relative and absolute abundances of this bacterium in most patients. CONCLUSIONS Our study confirms that thyroid cancer patients present a dysbiotic gut microbiota, with a reduction in F. prausnitzii's relative abundance. In our study, radioiodine did not negatively affect F. prausnitzii, quite the opposite, suggesting that this bacterium might play a role in resolving radiation aggression issues.
Collapse
Affiliation(s)
- Ana Fernandes
- Department of Nuclear Medicine, Centro Hospitalar Universitário de São João, E.P.E., 4200-319 Porto, Portugal
| | - Ana Oliveira
- Department of Nuclear Medicine, Centro Hospitalar Universitário de São João, E.P.E., 4200-319 Porto, Portugal
| | - Ana Luísa Carvalho
- Department of Nuclear Medicine, Centro Hospitalar Universitário de São João, E.P.E., 4200-319 Porto, Portugal
| | - Raquel Soares
- Department of Biomedicine, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Pedro Barata
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Pharmaceutical Science, Faculdade de Ciências da Saúde da Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| |
Collapse
|
12
|
Yi Y, Lu W, Shen L, Wu Y, Zhang Z. The gut microbiota as a booster for radiotherapy: novel insights into radio-protection and radiation injury. Exp Hematol Oncol 2023; 12:48. [PMID: 37218007 DOI: 10.1186/s40164-023-00410-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Approximately 60-80% of cancer patients treated with abdominopelvic radiotherapy suffer post-radiotherapy toxicities including radiation enteropathy and myelosuppression. Effective preventive and therapeutic strategies are lacking for such radiation injury. The gut microbiota holds high investigational value for deepening our understanding of the pathogenesis of radiation injury, especially radiation enteropathy which resembles inflammatory bowel disease pathophysiology and for facilitating personalized medicine by providing safer therapies tailored for cancer patients. Preclinical and clinical data consistently support that gut microbiota components including lactate-producers, SCFA-producers, indole compound-producers and Akkermansia impose intestinal and hematopoietic radio-protection. These features serve as potential predictive biomarkers for radiation injury, together with the microbial diversity which robustly predicts milder post-radiotherapy toxicities in multiple types of cancer. The accordingly developed manipulation strategies including selective microbiota transplantation, probiotics, purified functional metabolites and ligands to microbe-host interactive pathways are promising radio-protectors and radio-mitigators that merit extensive validation in clinical trials. With massive mechanistic investigations and pilot clinical trials reinforcing its translational value the gut microbiota may boost the prediction, prevention and mitigation of radiation injury. In this review, we summarize the state-of-the-art landmark researches related with radio-protection to provide illuminating insights for oncologists, gastroenterologists and laboratory scientists interested in this overlooked complexed disorder.
Collapse
Affiliation(s)
- Yuxi Yi
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Weiqing Lu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Lijun Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China.
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China.
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.
| |
Collapse
|
13
|
Godley FA, Shogan BD, Hyman NH. Role of the Microbiome in Malignancy. Surg Infect (Larchmt) 2023; 24:271-275. [PMID: 37010971 PMCID: PMC10771884 DOI: 10.1089/sur.2023.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
The conceptual underpinning of carcinogenesis has been strongly influenced by an expanded understanding of the human microbiome. Malignancy risks in diverse organs have been uniquely tied to aspects of the resident microbiota in different organs and systems including the colon, lungs, pancreas, ovaries, uterine cervix, and stomach; other organs are increasingly linked to maladaptive aspects of the microbiome as well. In this way, the maladaptive microbiome may be termed an oncobiome. Microbe-driven inflammation, anti-inflammation, and mucosal protection failure, as well as diet-induced microbiome derangement are all mechanisms that influence malignancy risk. Therefore, they also offer potential avenues of diagnostic and therapeutic intervention to modify malignancy risk, and to perhaps interrupt progression toward cancer in different sites. Each of these mechanisms will be explored using colorectal malignancy as a prototype condition to demonstrate the microbiome's role in carcinogenesis.
Collapse
Affiliation(s)
- Frederick A. Godley
- Department of Surgery, The University of Chicago Medicine, Chicago, Illinois, USA
| | - Benjamin D. Shogan
- Department of Surgery, The University of Chicago Medicine, Chicago, Illinois, USA
| | - Neil H. Hyman
- Department of Surgery, The University of Chicago Medicine, Chicago, Illinois, USA
| |
Collapse
|
14
|
Cai P, Xiong J, Sha H, Dai X, Lu J. Tumor bacterial markers diagnose the initiation and four stages of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1123544. [PMID: 36992683 PMCID: PMC10040638 DOI: 10.3389/fcimb.2023.1123544] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Increasing evidence has supported dysbiosis in the faecal microbiome along control-adenoma-carcinoma sequence. In contrast, the data is lacking for in situ tumor bacterial community over colorectal cancer (CRC) progression, resulting in the uncertainties of identifying CRC-associated taxa and diagnosing the sequential CRC stages. Through comprehensive collection of benign polyps (BP, N = 45) and the tumors (N = 50) over the four CRC stages, we explored the dynamics of bacterial communities over CRC progression using amplicons sequencing. Canceration was the primarily factor governing the bacterial community, followed by the CRC stages. Besides confirming known CRC-associated taxa using differential abundance, we identified new CRC driver species based on their keystone features in NetShift, including Porphyromonas endodontalis, Ruminococcus torques and Odoribacter splanchnicus. Tumor environments were less selective for stable core community, resulting in heterogeneity in bacterial communities over CRC progression, as supported by higher average variation degree, lower occupancy and specificity compared with BP. Intriguingly, tumors could recruit beneficial taxa antagonizing CRC-associated pathogens at CRC initiation, a pattern known as “cry-for-help”. By distinguishing age- from CRC stage-associated taxa, the top 15 CRC stage-discriminatory taxa contributed an overall 87.4% accuracy in diagnosing BP and each CRC stage, in which no CRC patients were falsely diagnosed as BP. The accuracy of diagnosis model was unbiased by human age and gender. Collectively, our findings provide new CRC-associated taxa and updated interpretations for CRC carcinogenesis from an ecological perspective. Moving beyond stratifying case-control, the CRC-stage discriminatory taxa could add the diagnosis of BP and the four CRC stages, especially the patients with poor pathological feature and un-reproducibility between two observers.
Collapse
Affiliation(s)
- Ping Cai
- Ningbo Second Hospital, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Haonan Sha
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiaoyu Dai
- Ningbo Second Hospital, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- *Correspondence: Xiaoyu Dai, ; Jiaqi Lu,
| | - Jiaqi Lu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang KinGene Bio-technology Co., Ltd, Ningbo, China
- *Correspondence: Xiaoyu Dai, ; Jiaqi Lu,
| |
Collapse
|
15
|
Yuan H, Gui R, Wang Z, Fang F, Zhao H. Gut microbiota: A novel and potential target for radioimmunotherapy in colorectal cancer. Front Immunol 2023; 14:1128774. [PMID: 36798129 PMCID: PMC9927011 DOI: 10.3389/fimmu.2023.1128774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers, with a high mortality rate, and is a major burden on human health worldwide. Gut microbiota regulate human immunity and metabolism through producing numerous metabolites, which act as signaling molecules and substrates for metabolic reactions in various biological processes. The importance of host-gut microbiota interactions in immunometabolic mechanisms in CRC is increasingly recognized, and interest in modulating the microbiota to improve patient's response to therapy has been raising. However, the specific mechanisms by which gut microbiota interact with immunotherapy and radiotherapy remain incongruent. Here we review recent advances and discuss the feasibility of gut microbiota as a regulatory target to enhance the immunogenicity of CRC, improve the radiosensitivity of colorectal tumor cells and ameliorate complications such as radiotoxicity. Currently, great breakthroughs in the treatment of non-small cell lung cancer and others have been achieved by radioimmunotherapy, but radioimmunotherapy alone has not been effective in CRC patients. By summarizing the recent preclinical and clinical evidence and considering regulatory roles played by microflora in the gut, such as anti-tumor immunity, we discuss the potential of targeting gut microbiota to enhance the efficacy of radioimmunotherapy in CRC and expect this review can provide references and fresh ideas for the clinical application of this novel strategy.
Collapse
Affiliation(s)
- Hanghang Yuan
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China,National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Gui
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China,National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhicheng Wang
- National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Fang Fang
- National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China,*Correspondence: Fang Fang, ; Hongguang Zhao,
| | - Hongguang Zhao
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China,*Correspondence: Fang Fang, ; Hongguang Zhao,
| |
Collapse
|
16
|
The Species of Gut Bacteria Associated with Antitumor Immunity in Cancer Therapy. Cells 2022; 11:cells11223684. [PMID: 36429112 PMCID: PMC9688644 DOI: 10.3390/cells11223684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Both preclinical and clinical studies have demonstrated that the modulation of gut microbiota could be a promising strategy for enhancing antitumor immune responses and reducing resistance to immunotherapy in cancer. Various mechanisms, including activation of pattern recognition receptors, gut commensals-produced metabolites and antigen mimicry, have been revealed. Different gut microbiota modulation strategies have been raised, such as fecal microbiota transplantation, probiotics, and dietary selection. However, the identification of gut bacteria species that are either favorable or unfavorable for cancer therapy remains a major challenge. Herein, we summarized the findings related to gut microbiota species observed in the modulation of antitumor immunity. We also discussed the different mechanisms underlying different gut bacteria's functions and the potential applications of these bacteria to cancer immunotherapy in the future.
Collapse
|
17
|
Alterations in the gut microbiome in patients with esophageal carcinoma in response to esophagectomy and neoadjuvant treatment. Surg Today 2022; 53:663-674. [DOI: 10.1007/s00595-022-02607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022]
|
18
|
Chen C, Shen J, Du Y, Shi X, Niu Y, Jin G, Liu Y, Shi Y, Lyu J, Lin L. Characteristics of gut microbiota in patients with gastric cancer by surgery, chemotherapy and lymph node metastasis. Clin Transl Oncol 2022; 24:2181-2190. [PMID: 35794453 DOI: 10.1007/s12094-022-02875-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Gastric cancer (GC) is a malignant gastrointestinal tumor that can result in high mortality. Surgery and chemotherapy are often used for the effective treatment of GC. In addition, lymph node metastasis is a significant factor affecting the therapy of GC. Current researches have revealed that gut microbiota has the potential as biomarkers to distinguish healthy people and GC patients. However, the relationship between surgery, chemotherapy, and lymph node metastasis is still unclear. METHODS In this study, 16S rRNA sequencing was used to investigate 157 GC fecal samples to identify the role of surgery, chemotherapy, and lymph node metastasis. Immunohistochemical analysis was used to value the expression of Ki67, HER2 in GC patient tissues. RESULTS There exist some gut microbiotas which can distinguish surgery from non-surgery GC patients, including Enterococcus, Megasphaera, Corynebacterium, Roseburia, and Lachnospira. Differences between lymph node metastasis and chemotherapy in GC patients are not significant. Moreover, we found the abundance of Blautia, Ruminococcus, Oscillospira were related to the expression of Ki67 and the abundance of Prevotella, Lachnospira, Eubacterium, Desulfovibiro were correlated with the expression of HER2. CONCLUSIONS The choice of treatment has a certain impact on the intestinal flora of patients with gastric cancer. Our research shows that surgery has a great effect on the intestinal flora of patients with gastric cancer. However, there were no significant differences in the characteristics of intestinal flora in patients with gastric cancer whether they received chemotherapy or whether they had lymph node metastasis. In addition, the association of gut microbiota with Ki67 and HER2 indicators is expected to provide the possibility of gut microbiota as a tumor prognostic marker.
Collapse
Affiliation(s)
- Changchang Chen
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jian Shen
- Department of Medical Administration, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yaoqiang Du
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Xinwei Shi
- The Eye Hospital of Wenzhou Medical University (Zhejiang Eye Hospital), Hangzhou, Zhejiang, China
| | - Yaofang Niu
- Hangzhou Guhe Information and Technology Company, Hangzhou, Zhejiang, China
| | - Gulei Jin
- Hangzhou Guhe Information and Technology Company, Hangzhou, Zhejiang, China
| | - Yanxin Liu
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yongkang Shi
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| | - Jianxin Lyu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| | - Lijun Lin
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Li J, Zhao M, Li J, Wang M, Zhao C. Combining fecal microbiome and metabolomics to reveal the disturbance of gut microbiota in liver injury and the therapeutic mechanism of shaoyao gancao decoction. Front Pharmacol 2022; 13:911356. [PMID: 36059945 PMCID: PMC9428823 DOI: 10.3389/fphar.2022.911356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Chemical liver injury is closely related to gut microbiota and its metabolites. In this study, we combined 16S rRNA gene sequencing, 1H NMR-based fecal metabolomics and GC-MS to evaluate the changes in gut microbiota, fecal metabolites and Short-chain fatty acids (SCFAs) in CCl4-induced liver injury in Sprague-Dawley rats, and the therapeutic effect of Shaoyao Gancao Decoction (SGD). The results showed that CCl4-induced liver injury overexpressed CYP2E1, enhanced oxidative stress, decreased antioxidant enzymes (SOD, GSH), increased peroxidative products MDA and inflammatory responses (IL-6, TNF-α), which were ameliorated by SGD treatment. H&E staining showed that SGD could alleviate liver tissue lesions, which was confirmed by the recovered liver index, ALT and AST. Correlation network analysis indicated that liver injury led to a decrease in microbiota correlation, while SGD helped restore it. In addition, fecal metabolomic confirmed the PICRUSt results that liver injury caused disturbances in amino acid metabolism, which were modulated by SGD. Spearman’s analysis showed that liver injury disrupted ammonia transport, urea cycle, intestinal barrier and energy metabolism. Moreover, the levels of SCFAs were also decreased, and the abundance of Lachnoclostridium, Blautia, Lachnospiraceae_NK4A136_group, UCG-005 and Turicibacter associated with SCFAs were altered. However, all this can be alleviated by SGD. More importantly, pseudo germ-free rats demonstrated that the absence of gut microbiota aggravated liver injury and affected the efficacy of SGD. Taken together, we speculate that the gut microbiota has a protective role in the pathogenesis of liver injury, and has a positive significance for the efficacy of SGD. Moreover, SGD can treat liver injury by modulating gut microbiota and its metabolites and SCFAs. This provides useful evidence for the study of the pathogenesis of liver injury and the clinical application of SGD.
Collapse
Affiliation(s)
- Jingwei Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jianming Li
- Guangxi University of Chinese Medicine, Nanning, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Miao Wang, ; Chunjie Zhao,
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Miao Wang, ; Chunjie Zhao,
| |
Collapse
|
20
|
Gamal A, Elshaer M, Alabdely M, Kadry A, McCormick TS, Ghannoum M. The Mycobiome: Cancer Pathogenesis, Diagnosis, and Therapy. Cancers (Basel) 2022; 14:2875. [PMID: 35740541 PMCID: PMC9221014 DOI: 10.3390/cancers14122875] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is among the leading causes of death globally. Despite advances in cancer research, a full understanding of the exact cause has not been established. Recent data have shown that the microbiome has an important relationship with cancer on various levels, including cancer pathogenesis, diagnosis and prognosis, and treatment. Since most studies have focused only on the role of bacteria in this process, in this article we review the role of fungi-another important group of the microbiome, the totality of which is referred to as the "mycobiome"-in the development of cancer and how it can impact responses to anticancer medications. Furthermore, we provide recent evidence that shows how the different microbial communities interact and affect each other at gastrointestinal and non-gastrointestinal sites, including the skin, thereby emphasizing the importance of investigating the microbiome beyond bacteria.
Collapse
Affiliation(s)
- Ahmed Gamal
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.G.); (M.E.); (A.K.); (T.S.M.)
| | - Mohammed Elshaer
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.G.); (M.E.); (A.K.); (T.S.M.)
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mayyadah Alabdely
- Department of Internal Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
| | - Ahmed Kadry
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.G.); (M.E.); (A.K.); (T.S.M.)
- Department of Dermatology and Venereology, Al-Azhar University, Cairo 11651, Egypt
| | - Thomas S. McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.G.); (M.E.); (A.K.); (T.S.M.)
| | - Mahmoud Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.G.); (M.E.); (A.K.); (T.S.M.)
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
21
|
Takenaka IKTM, Bartelli TF, Defelicibus A, Sendoya JM, Golubicki M, Robbio J, Serpa MS, Branco GP, Santos LBC, Claro LCL, Dos Santos GO, Kupper BEC, da Silva IT, Llera AS, de Mello CAL, Riechelmann RP, Dias-Neto E, Iseas S, Aguiar S, Nunes DN. Exome and Tissue-Associated Microbiota as Predictive Markers of Response to Neoadjuvant Treatment in Locally Advanced Rectal Cancer. Front Oncol 2022; 12:809441. [PMID: 35392220 PMCID: PMC8982181 DOI: 10.3389/fonc.2022.809441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical and pathological responses to multimodal neoadjuvant therapy in locally advanced rectal cancers (LARCs) remain unpredictable, and robust biomarkers are still lacking. Recent studies have shown that tumors present somatic molecular alterations related to better treatment response, and it is also clear that tumor-associated bacteria are modulators of chemotherapy and immunotherapy efficacy, therefore having implications for long-term survivorship and a good potential as the biomarkers of outcome. Here, we performed whole exome sequencing and 16S ribosomal RNA (rRNA) amplicon sequencing from 44 pre-treatment LARC biopsies from Argentinian and Brazilian patients, treated with neoadjuvant chemoradiotherapy or total neoadjuvant treatment, searching for predictive biomarkers of response (responders, n = 17; non-responders, n = 27). In general, the somatic landscape of LARC was not capable to predict a response; however, a significant enrichment in mutational signature SBS5 was observed in non-responders (p = 0.0021), as well as the co-occurrence of APC and FAT4 mutations (p < 0.05). Microbiota studies revealed a similar alpha and beta diversity of bacteria between response groups. Yet, the linear discriminant analysis (LDA) of effect size indicated an enrichment of Hungatella, Flavonifractor, and Methanosphaera (LDA score ≥3) in the pre-treatment biopsies of responders, while non-responders had a higher abundance of Enhydrobacter, Paraprevotella (LDA score ≥3) and Finegoldia (LDA score ≥4). Altogether, the evaluation of these biomarkers in pre-treatment biopsies could eventually predict a neoadjuvant treatment response, while in post-treatment samples, it could help in guiding non-operative treatment strategies.
Collapse
Affiliation(s)
| | - Thais F Bartelli
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Alexandre Defelicibus
- Laboratory of Bioinformatics and Computational Biology, International Center for Research, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Juan M Sendoya
- Laboratorio de Terapia Molecular y Celular - Genomics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariano Golubicki
- Oncology Unit, Hospital de Gastroenterología Carlos Bonorino Udaondo, Buenos Aires, Argentina.,Clinical Oncology, Intergrupo Argentino para el Tratamiento de los Tumores Gastrointestinales (IATTGI), Buenos Aires, Argentina
| | - Juan Robbio
- Clinical Oncology, Intergrupo Argentino para el Tratamiento de los Tumores Gastrointestinales (IATTGI), Buenos Aires, Argentina
| | - Marianna S Serpa
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Gabriela P Branco
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Luana B C Santos
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Laura C L Claro
- Department of Pathology, A.C.Camargo Cancer Center, São Paulo, Brazil
| | | | - Bruna E C Kupper
- Colorectal Cancer Department, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Israel T da Silva
- Laboratory of Bioinformatics and Computational Biology, International Center for Research, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Andrea S Llera
- Laboratorio de Terapia Molecular y Celular - Genomics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Celso A L de Mello
- Department of Clinical Oncology, A.C.Camargo Cancer Center, São Paulo, Brazil
| | | | - Emmanuel Dias-Neto
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil.,Laboratory of Neurosciences (LIM-27) Alzira Denise Hertzog Silva, Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Soledad Iseas
- Oncology Unit, Hospital de Gastroenterología Carlos Bonorino Udaondo, Buenos Aires, Argentina
| | - Samuel Aguiar
- Colorectal Cancer Department, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Diana Noronha Nunes
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil.,National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, Brazil
| |
Collapse
|
22
|
Moschen AR, Sammy Y, Marjenberg Z, Heptinstall AB, Pooley N, Marczewska AM. The Underestimated and Overlooked Burden of Diarrhea and Constipation in Cancer Patients. Curr Oncol Rep 2022; 24:861-874. [PMID: 35325401 DOI: 10.1007/s11912-022-01267-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize and discuss the diverse causes of two major gastrointestinal dysfunction symptoms, diarrhea and constipation, in cancer patients. We also discuss short- and long-term clinical, economic, and humanistic consequences, including the impact on cancer treatment regimens and patient quality of life, highlighting the limitations of the literature. RECENT FINDINGS Diarrhea and constipation as a result of cancer and its treatment can risk the success of anti-cancer therapies by requiring treatment delay or withdrawal, and imposes a substantial humanistic burden in patients with cancer. Despite its importance and frequency, gastrointestinal side effects may be overlooked due to the focus on cancer treatment, and the impact on patients may be underestimated. Additionally, the burden reported may not fully reflect current cancer management, particularly the true impact of economic consequences. A full understanding of the burden of diarrhea and constipation in patients with cancer is required, including broad evaluation of clinical considerations, the patient experience, and an updated assessment of economic burden. This would improve caregivers' appreciation of the impact of gastrointestinal dysfunction and aid the prioritization of future research efforts.
Collapse
|
23
|
Nikolic A, Krivokapic Z. Nucleic acid-based markers of response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Surg Oncol 2022; 41:101743. [PMID: 35358913 DOI: 10.1016/j.suronc.2022.101743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
The progress that has been made in the treatment of rectal cancer has mostly resulted from multimodality strategy approach that combines surgery, chemotherapy and radiotherapy. In locally advanced rectal cancer (LARC), surgery remains the primary treatment, while neoadjuvant chemoradiotherapy (nCRT) is used to downsize or downstage the tumor before surgical resection. Highly variable response to nCRT observed in LARC patients raises the need for biomarkers to enable prediction and evaluation of treatment response in a more efficient and timely manner than currently available tools. The search for predictive biomarkers continues beyond blood proteins, which have failed in subsequent validation studies. This review presents nucleic acids-based markers and their predictive potential in LARC patients. Most of the candidate biomarkers come from relatively small single-institution studies. The only candidate biomarker that emerged as relevant in more than a single study was elevated levels of Fusobacterium nucleatum nucleic acids in tumor tissue. Considering that this marker is easily accessible through non-invasive analysis of faecal samples, its predictive potential is worth further validation. The other candidate nucleic acid-based biomarkers require more consistent studies on larger cohorts before they can be considered for use in clinical setting.
Collapse
Affiliation(s)
- Aleksandra Nikolic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | - Zoran Krivokapic
- Clinic for Digestive Surgery, Clinical Center of Serbia, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
24
|
Poonacha KNT, Villa TG, Notario V. The Interplay among Radiation Therapy, Antibiotics and the Microbiota: Impact on Cancer Treatment Outcomes. Antibiotics (Basel) 2022; 11:331. [PMID: 35326794 PMCID: PMC8944497 DOI: 10.3390/antibiotics11030331] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/01/2022] Open
Abstract
Radiation therapy has been used for more than a century, either alone or in combination with other therapeutic modalities, to treat most types of cancer. On average, radiation therapy is included in the treatment plans for over 50% of all cancer patients, and it is estimated to contribute to about 40% of curative protocols, a success rate that may reach 90%, or higher, for certain tumor types, particularly on patients diagnosed at early disease stages. A growing body of research provides solid support for the existence of bidirectional interaction between radiation exposure and the human microbiota. Radiation treatment causes quantitative and qualitative changes in the gut microbiota composition, often leading to an increased abundance of potentially hazardous or pathogenic microbes and a concomitant decrease in commensal bacteria. In turn, the resulting dysbiotic microbiota becomes an important contributor to worsen the adverse events caused in patients by the inflammatory process triggered by the radiation treatment and a significant determinant of the radiation therapy anti-tumor effectiveness. Antibiotics, which are frequently included as prophylactic agents in cancer treatment protocols to prevent patient infections, may affect the radiation/microbiota interaction through mechanisms involving both their antimicrobial activity, as a mediator of microbiota imbalances, and their dual capacity to act as pro- or anti-tumorigenic effectors and, consequently, as critical determinants of radiation therapy outcomes. In this scenario, it becomes important to introduce the use of probiotics and/or other agents that may stabilize the healthy microbiota before patients are exposed to radiation. Ultimately, newly developed methodologies may facilitate performing personalized microbiota screenings on patients before radiation therapy as an accurate way to identify which antibiotics may be used, if needed, and to inform the overall treatment planning. This review examines currently available data on these issues from the perspective of improving radiation therapy outcomes.
Collapse
Affiliation(s)
| | - Tomás G. Villa
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15705 La Coruña, Spain;
| | - Vicente Notario
- Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
25
|
Li M, Xiao Q, Venkatachalam N, Hofheinz RD, Veldwijk MR, Herskind C, Ebert MP, Zhan T. Predicting response to neoadjuvant chemoradiotherapy in rectal cancer: from biomarkers to tumor models. Ther Adv Med Oncol 2022; 14:17588359221077972. [PMID: 35222695 PMCID: PMC8864271 DOI: 10.1177/17588359221077972] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major contributor to cancer-associated morbidity worldwide and over one-third of CRC is located in the rectum. Neoadjuvant chemoradiotherapy (nCRT) followed by surgical resection is commonly applied to treat locally advanced rectal cancer (LARC). In this review, we summarize current and novel concepts of neoadjuvant therapy for LARC such as total neoadjuvant therapy and describe how these developments impact treatment response. Moreover, as response to nCRT is highly divergent in rectal cancers, we discuss the role of potential predictive biomarkers. We review recent advances in biomarker discovery, from a clinical as well as a histopathological and molecular perspective. Furthermore, the role of emerging predictive biomarkers derived from the tumor environment such as immune cell composition and gut microbiome is presented. Finally, we describe how different tumor models such as patient-derived cancer organoids are used to identify novel predictive biomarkers for chemoradiotherapy (CRT) in rectal cancer.
Collapse
Affiliation(s)
- Moying Li
- Medical Faculty Mannheim, Heidelberg
University, Mannheim
| | - Qiyun Xiao
- Department of Medicine II, Mannheim University
Hospital, Medical Faculty Mannheim, Heidelberg University, Mannheim,
Germany
| | - Nachiyappan Venkatachalam
- Department of Medicine II, Mannheim University
Hospital, Medical Faculty Mannheim, Heidelberg University, Mannheim,
Germany
| | - Ralf-Dieter Hofheinz
- Department of Medicine III, Mannheim University
Hospital, Medical Faculty Mannheim, Heidelberg University, Mannheim,
GermanyMannheim Cancer Center, Medical Faculty Mannheim, Heidelberg
University, Mannheim, Germany
| | - Marlon R. Veldwijk
- Department of Radiation Oncology, Mannheim
University Hospital, Medical Faculty Mannheim, Heidelberg University,
Mannheim, Germany
| | - Carsten Herskind
- Department of Radiation Oncology, Mannheim
University Hospital, Medical Faculty Mannheim, Heidelberg University,
Mannheim, Germany
| | - Matthias P. Ebert
- Department of Medicine II, Mannheim University
Hospital, Medical Faculty Mannheim, Heidelberg University, Mannheim,
GermanyMannheim Cancer Center, Medical Faculty Mannheim, Heidelberg
University, Mannheim, GermanyDKFZ-Hector Cancer Institute, University
Medical Center Mannheim, Mannheim, Germany
| | - Tianzuo Zhan
- Department of Internal Medicine II, Mannheim
University Hospital, Medical Faculty Mannheim, Heidelberg University,
Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, GermanyMannheim Cancer Center,
Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
26
|
Leigh SJ, Lynch CMK, Bird BRH, Griffin BT, Cryan JF, Clarke G. Gut microbiota-drug interactions in cancer pharmacotherapies: implications for efficacy and adverse effects. Expert Opin Drug Metab Toxicol 2022; 18:5-26. [PMID: 35176217 DOI: 10.1080/17425255.2022.2043849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The gut microbiota is involved in host physiology and health. Reciprocal microbiota-drug interactions are increasingly recognized as underlying some individual differences in therapy response and adverse events. Cancer pharmacotherapies are characterized by a high degree of interpatient variability in efficacy and side effect profile and recently, the microbiota has emerged as a factor that may underlie these differences. AREAS COVERED The effects of cancer pharmacotherapy on microbiota composition and function are reviewed with consideration of the relationship between baseline microbiota composition, microbiota modification, antibiotics exposure and cancer therapy efficacy. We assess the evidence implicating the microbiota in cancer therapy-related adverse events including impaired gut function, cognition and pain perception. Finally, potential mechanisms underlying microbiota-cancer drug interactions are described, including direct microbial metabolism, and microbial modulation of liver metabolism and immune function. This review focused on preclinical and clinical studies conducted in the last 5 years. EXPERT OPINION Preclinical and clinical research supports a role for baseline microbiota in cancer therapy efficacy, with emerging evidence that the microbiota modification may assist in side effect management. Future efforts should focus on exploiting this knowledge towards the development of microbiota-targeted therapies. Finally, a focus on specific drug-microbiota-cancer interactions is warranted.
Collapse
Affiliation(s)
| | | | | | | | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Sevcikova A, Izoldova N, Stevurkova V, Kasperova B, Chovanec M, Ciernikova S, Mego M. The Impact of the Microbiome on Resistance to Cancer Treatment with Chemotherapeutic Agents and Immunotherapy. Int J Mol Sci 2022; 23:ijms23010488. [PMID: 35008915 PMCID: PMC8745082 DOI: 10.3390/ijms23010488] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/04/2023] Open
Abstract
Understanding the mechanisms of resistance to therapy in human cancer cells has become a multifaceted limiting factor to achieving optimal cures in cancer patients. Besides genetic and epigenetic alterations, enhanced DNA damage repair activity, deregulation of cell death, overexpression of transmembrane transporters, and complex interactions within the tumor microenvironment, other mechanisms of cancer treatment resistance have been recently proposed. In this review, we will summarize the preclinical and clinical studies highlighting the critical role of the microbiome in the efficacy of cancer treatment, concerning mainly chemotherapy and immunotherapy with immune checkpoint inhibitors. In addition to involvement in drug metabolism and immune surveillance, the production of microbiota-derived metabolites might represent the link between gut/intratumoral bacteria and response to anticancer therapies. Importantly, an emerging trend of using microbiota modulation by probiotics and fecal microbiota transplantation (FMT) to overcome cancer treatment resistance will be also discussed.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
| | - Nikola Izoldova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
| | - Barbora Kasperova
- Department of Oncohematology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia;
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.C.); (M.M.)
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
- Correspondence: ; Tel.: +421-2-3229-5198
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.C.); (M.M.)
| |
Collapse
|
28
|
Fernandes A, Oliveira A, Soares R, Barata P. The Effects of Ionizing Radiation on Gut Microbiota, a Systematic Review. Nutrients 2021; 13:3025. [PMID: 34578902 PMCID: PMC8465723 DOI: 10.3390/nu13093025] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The human gut microbiota is defined as the microorganisms that collectively inhabit the intestinal tract. Its composition is relatively stable; however, an imbalance can be precipitated by various factors and is known to be associated with various diseases. Humans are daily exposed to ionizing radiation from ambient and medical procedures, and gastrointestinal side effects are not rare. METHODS A systematic search of PubMed, EMBASE, and Cochrane Library databases was conducted. Primary outcomes were changes in composition, richness, and diversity of the gut microbiota after ionizing radiation exposure. Standard methodological procedures expected by Cochrane were used. RESULTS A total of 2929 nonduplicated records were identified, and based on the inclusion criteria, 11 studies were considered. Studies were heterogeneous, with differences in population and outcomes. Overall, we found evidence for an association between ionizing radiation exposure and dysbiosis: reduction in microbiota diversity and richness, increase in pathogenic bacteria abundance (Proteobacteria and Fusobacteria), and decrease in beneficial bacteria (Faecalibacterium and Bifidobacterium). CONCLUSIONS This review highlights the importance of considering the influence of ionizing radiation exposure on gut microbiota, especially when considering the side effects of abdominal and pelvic radiotherapy. Better knowledge of these effects, with larger population studies, is needed.
Collapse
Affiliation(s)
- Ana Fernandes
- Department of Nuclear Medicine, Centro Hospitalar Universitário de São João, E.P.E., 4200-319 Porto, Portugal;
| | - Ana Oliveira
- Department of Nuclear Medicine, Centro Hospitalar Universitário de São João, E.P.E., 4200-319 Porto, Portugal;
| | - Raquel Soares
- Department of Biomedicine, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal;
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Pedro Barata
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Department of Pharmaceutical Science, Faculdade de Ciências da Saúde da Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| |
Collapse
|
29
|
Stott K, Phillips B, Parry L, May S. Recent advancements in the exploitation of the gut microbiome in the diagnosis and treatment of colorectal cancer. Biosci Rep 2021; 41:BSR20204113. [PMID: 34236075 PMCID: PMC8314433 DOI: 10.1042/bsr20204113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last few decades it has been established that the complex interaction between the host and the multitude of organisms that compose the intestinal microbiota plays an important role in human metabolic health and disease. Whilst there is no defined consensus on the composition of a healthy microbiome due to confounding factors such as ethnicity, geographical locations, age and sex, there are undoubtably populations of microbes that are consistently dysregulated in gut diseases including colorectal cancer (CRC). In this review, we discuss the most recent advances in the application of the gut microbiota, not just bacteria, and derived microbial compounds in the diagnosis of CRC and the potential to exploit microbes as novel agents in the management and treatment of CRC. We highlight examples of the microbiota, and their derivatives, that have the potential to become standalone diagnostic tools or be used in combination with current screening techniques to improve sensitivity and specificity for earlier CRC diagnoses and provide a perspective on their potential as biotherapeutics with translatability to clinical trials.
Collapse
Affiliation(s)
- Katie J. Stott
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Bethan Phillips
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Lee Parry
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Stephanie May
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, U.K
| |
Collapse
|
30
|
Antibiotic-induced disruption of the microbiome exacerbates chemotherapy-induced diarrhoea and can be mitigated with autologous faecal microbiota transplantation. Eur J Cancer 2021; 153:27-39. [PMID: 34130227 DOI: 10.1016/j.ejca.2021.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chemotherapy is well documented to disrupt the gut microbiome, leading to poor treatment outcomes and a heightened risk of adverse toxicity. Although strong associations exist between its composition and gastrointestinal toxicity, its causal contribution remains unclear. Our inability to move beyond association has limited the development and implementation of microbial-based therapeutics in chemotherapy adjuncts with no clear rationale of how and when to deliver them. METHODS/RESULTS Here, we investigate the impact of augmenting the gut microbiome on gastrointestinal toxicity caused by the chemotherapeutic agent, methotrexate (MTX). Faecal microbiome transplantation (FMT) delivered after MTX had no appreciable impact on gastrointestinal toxicity. In contrast, disruption of the microbiome with antibiotics administered before chemotherapy exacerbated gastrointestinal toxicity, impairing mucosal recovery (P < 0.0001) whilst increasing diarrhoea severity (P = 0.0007) and treatment-related mortality (P = 0.0045). Importantly, these detrimental effects were reversed when the microbiome was restored using autologous FMT (P = 0.03), a phenomenon dictated by the uptake and subsequent expansion of Muribaculaceae. CONCLUSIONS These are the first data to show that clinically impactful symptoms of gastrointestinal toxicity are dictated by the microbiome and provide a clear rationale for how and when to target the microbiome to mitigate the acute and chronic complications caused by disruption of the gastrointestinal microenvironment. Translation of this new knowledge should focus on stabilising and strengthening the gut microbiome before chemotherapy and developing new microbial approaches to accelerate recovery of the mucosa. By controlling the depth and duration of mucosal injury, secondary consequences of gastrointestinal toxicity may be avoided.
Collapse
|
31
|
Fan Q, Shang F, Chen C, Zhou H, Fan J, Yang M, Nie X, Liu L, Cai K, Liu H. Microbial Characteristics of Locally Advanced Rectal Cancer Patients After Neoadjuvant Chemoradiation Therapy According to Pathologic Response. Cancer Manag Res 2021; 13:2655-2667. [PMID: 33776484 PMCID: PMC7989702 DOI: 10.2147/cmar.s294936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/20/2021] [Indexed: 11/23/2022] Open
Abstract
Background Intestinal microbiota play a critical role in the development of colorectal cancer. However, little is known about the structure and characteristics of gut microbial in colorectal cancer, especially in locally advanced rectal cancer after neoadjuvant chemoradiation therapy. Methods Here, we performed this study to evaluate microbial characteristics between pathologic complete response (pCR) (n=12) and non-pathological complete response (Non-pCR) (n=45) tumor tissues from patients with locally advanced rectal cancer after neoadjuvant chemoradiation therapy. In this study, 16S rRNA gene sequencing was used to detect the microbial diversity including Alpha diversity and Beta diversity. Moreover, we used PICRUSt from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to predict the microbial metabolism functions. Results There was significant statistical difference in PFS between pCR and Non-pCR group (p < 0.05). However, there was no significant difference in OS between pCR and Non-pCR group. The microbial compositions in the both groups were Proteobacteria, Actinobacteria, Firmicutes and Thermi and Bacteroidetes at the phylum level. The five most predominant genera in both pCR and Non-pCR tissue groups were Sphingobium, Acinetobacter, Cupriavidus, Thermi and Sphingomonas at the genus level. The key taxa identified in the pCR and Non-pCR tissues were Thermi and Sphingomonadaceae respectively. In addition, a series of human disease-related genes were also significantly different between pCR and Non-pCR group. Conclusion In summary, we demonstrated the characteristic differences in microbial communities between pCR tissues and Non-pCR tumor tissues from locally advanced rectal cancer patients after neoadjuvant chemoradiation therapy. Our results present new alterations in the microbiome in locally advanced rectal cancer after neoadjuvant chemoradiation therapy, suggesting that it will provide a new perspective for the precise treatment of neoadjuvant rectal cancer by targeting specific microbial species in the future.
Collapse
Affiliation(s)
- Qilin Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Fumei Shang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Chen Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Hongxia Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Ming Yang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Li Liu
- Department of Epidemiology and Biostatistics, The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|