1
|
Chang J, Zhou Y, Zhang M, Li X, Zhang N, Luo X, Ni B, Wu H, Lu R, Zhang Y. CalR Inhibits the Swimming Motility and Polar Flagellar Gene Expression in Vibrio parahaemolyticus. J Microbiol 2024; 62:1125-1132. [PMID: 39643841 DOI: 10.1007/s12275-024-00179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 12/09/2024]
Abstract
Vibrio parahaemolyticus has two flagellar systems, the polar flagellum and lateral flagella, which are both intricately regulated by a multitude of factors. CalR, a LysR-type transcriptional regulator, is sensitive to calcium (Ca) and plays a crucial role in regulating the virulence and swarming motility of V. parahaemolyticus. In this study, we have demonstrated that the deletion of calR significantly enhances the swimming motility of V. parahaemolyticus under low Ca conditions but not under high Ca conditions or in the absence of Ca. CalR binds to the regulatory DNA regions of flgM, flgA, and flgB, which are located within the polar flagellar gene loci, with the purpose of repressing their transcription. Additionally, it exerts an indirect negative control over the transcription of flgK. The overexpression of CalR in Escherichia coli resulted in a reduction in the expression levels of flgM, flgA, and flgB, while having no impact on the expression of flgK. In summary, this research demonstrates that the negative regulation of V. parahaemolyticus swimming motility by CalR under low Ca conditions is achieved through its regulation on the transcription of polar flagellar genes.
Collapse
Affiliation(s)
- Jingyang Chang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yining Zhou
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
| | - Nan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
| | - Bin Ni
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai, People's Republic of China
| | - Haisheng Wu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai, People's Republic of China.
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China.
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China.
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai, People's Republic of China.
| |
Collapse
|
2
|
Zhou Y, Chang J, Li F, He M, Li R, Hou Y, Zhang Y, Lu R, Yang M. H-NS-Mediated Regulation of Swimming Motility and Polar Flagellar Gene Expression in Vibrio parahaemolyticus. Curr Microbiol 2024; 82:5. [PMID: 39579231 DOI: 10.1007/s00284-024-03993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Vibrio parahaemolyticus is equipped with two distinct flagellar systems: a polar flagellum and numerous lateral flagella. The polar flagellum plays a role in propelling swimming in liquids, while the lateral flagella serve to enhance swarming on surfaces or in viscous environments. H-NS is a histone-like nucleoid structuring protein that plays a regulatory role in both the swimming and swarming motility of V. parahaemolyticus. However, the detailed mechanisms have not been fully understood. In this study, we have demonstrated that the deletion of hns hindered the growth rate of V. parahaemolyticus during the logarithmic growth phase and significantly decreased the swimming motility. H-NS directly activated the transcription of flgMN, flgAMN, flgBCDEFGHIJ, and flgKL-flaC located within the polar flagellar gene clusters. The expression of H-NS in Escherichia coli led to a marked elevation in the expression levels of flgM, flgA, flgB, and flgK, suggesting the positive effect of H-NS on the expression of polar flagellar genes in E. coli. This work demonstrates that the positive regulation of H-NS on the swimming motility in V. parahaemolyticus may be achieved through its regulation of polar flagellar gene expression and bacterial growth.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Jingyang Chang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Feng Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Mei He
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Rui Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Yaqin Hou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China.
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
3
|
Wang W, Li Y, Lu S, Liu P, Han X, Sun W, Wang Q, Fang W, Jiang W. BolA-like protein (IbaG) promotes biofilm formation and pathogenicity of Vibrio parahaemolyticus. Front Microbiol 2024; 15:1436770. [PMID: 39144210 PMCID: PMC11322356 DOI: 10.3389/fmicb.2024.1436770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Vibrio parahaemolyticus is a gram-negative halophilic bacterium widespread in temperate and tropical coastal waters; it is considered to be the most frequent cause of Vibrio-associated gastroenteritis in many countries. BolA-like proteins, which reportedly affect various growth and metabolic processes including flagellar synthesis in bacteria, are widely conserved from prokaryotes to eukaryotes. However, the effects exerted by BolA-like proteins on V. parahaemolyticus remain unclear, and thus require further investigation. In this study, our purpose was to investigate the role played by BolA-like protein (IbaG) in the pathogenicity of V. parahaemolyticus. We used homologous recombination to obtain the deletion strain ΔibaG and investigated the biological role of BolA family protein IbaG in V. parahaemolyticus. Our results showed that IbaG is a bacterial transcription factor that negatively modulates swimming capacity. Furthermore, overexpressing IbaG enhanced the capabilities of V. parahaemolyticus for swarming and biofilm formation. In addition, inactivation of ibaG in V. parahaemolyticus SH112 impaired its capacity for colonizing the heart, liver, spleen, and kidneys, and reduced visceral tissue damage, thereby leading to diminished virulence, compared with the wild-type strain. Finally, RNA-sequencing revealed 53 upregulated and 71 downregulated genes in the deletion strain ΔibaG. KEGG enrichment analysis showed that the two-component system, quorum sensing, bacterial secretion system, and numerous amino acid metabolism pathways had been altered due to the inactivation of ibaG. The results of this study indicated that IbaG exerts a considerable effect on gene regulation, motility, biofilm formation, and pathogenicity of V. parahaemolyticus. To the best of our knowledge, this is the first systematic study on the role played by IbaG in V. parahaemolyticus infections. Thus, our findings may lead to a better understanding of the metabolic processes involved in bacterial infections and provide a basis for the prevention and control of such infections.
Collapse
Affiliation(s)
- Wenchao Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yangyang Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuqi Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Pengxuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weidong Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Quan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weihuan Fang
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
4
|
Naknaen A, Surachat K, Manit J, Jetwanna KWN, Thawonsuwan J, Pomwised R. Virulent properties and genomic diversity of Vibrio vulnificus isolated from environment, human, diseased fish. Microbiol Spectr 2024; 12:e0007924. [PMID: 38860819 PMCID: PMC11218479 DOI: 10.1128/spectrum.00079-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
The incidence of Vibrio vulnificus infections, with high mortality rates in humans and aquatic animals, has escalated, highlighting a significant public health challenge. Currently, reliable markers to identify strains with high virulence potential are lacking, and the understanding of evolutionary drivers behind the emergence of pathogenic strains is limited. In this study, we analyzed the distribution of virulent genotypes and phenotypes to discern the infectious potential of V. vulnificus strains isolated from three distinct sources. Most isolates, traditionally classified as biotype 1, possessed the virulence-correlated gene-C type. Environmental isolates predominantly exhibited YJ-like alleles, while clinical and diseased fish isolates were significantly associated with the nanA gene and pathogenicity region XII. Hemolytic activity was primarily observed in the culture supernatants of clinical and diseased fish isolates. Genetic relationships, as determined by multiple-locus variable-number tandem repeat analysis, suggested that strains originating from the same source tended to cluster together. However, multilocus sequence typing revealed considerable genetic diversity across clusters and sources. A phylogenetic analysis using single nucleotide polymorphisms of diseased fish strains alongside publicly available genomes demonstrated a high degree of evolutionary relatedness within and across different isolation sources. Notably, our findings reveal no direct correlation between phylogenetic patterns, isolation sources, and virulence capabilities. This underscores the necessity for proactive risk management strategies to address pathogenic V. vulnificus strains emerging from environmental reservoirs.IMPORTANCEAs the global incidence of Vibrio vulnificus infections rises, impacting human health and marine aquacultures, understanding the pathogenicity of environmental strains remains critical yet underexplored. This study addresses this gap by evaluating the virulence potential and genetic relatedness of V. vulnificus strains, focusing on environmental origins. We conduct an extensive genotypic analysis and phenotypic assessment, including virulence testing in a wax moth model. Our findings aim to uncover genetic and evolutionary factors that drive pathogenic strain emergence in the environment. This research advances our ability to identify reliable virulence markers and understand the distribution of pathogenic strains, offering significant insights for public health and environmental risk management.
Collapse
Affiliation(s)
- Ampapan Naknaen
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jutamas Manit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - Jumroensri Thawonsuwan
- Department of Fisheries, Aquatic Animal Health Research and Development Division, Songkhla Aquatic Animal Health Research Center, Songkhla, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
5
|
Aerts M, Baron S, Bortolaia V, Hendriksen R, Guerra B, Stoicescu A, Beloeil P. Technical specifications for a EU-wide baseline survey of antimicrobial resistance in bacteria from aquaculture animals. EFSA J 2024; 22:e8928. [PMID: 39086460 PMCID: PMC11289621 DOI: 10.2903/j.efsa.2024.8928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
The European Commission requested scientific and technical assistance in the preparation of a EU-wide baseline survey of antimicrobial resistance (AMR) in bacteria from aquaculture animals. It is recommended that the survey would aim at estimating the occurrence of AMR in Aeromonas spp. isolated from Atlantic Salmon (Salmo salar), European seabass (Dicentrarchus labrax) and trout (Salmo trutta, Salvelinus fontinalis, Oncorhynchus mykiss) intended to consumption, at harvesting (at farm/slaughter), at the EU level and in addition, at estimating the occurrence and diversity of AMR of Escherichia coli, Enterococcus faecium, Enterococcus faecalis, Vibrio parahaemolyticus and Vibrio alginolyticus in blue mussel (Mytilus edulis) and Mediterranean mussel (Mytilus galloprovincialis) from production areas and at dispatch centres at the EU level. These technical specifications define the target populations, the sample size for the survey, sample collection requirements, the analytical methods (for isolation, identification, phenotypic susceptibility testing and further genotypic analysis of some of the bacteria targeted) and the data reporting requirements. The data to be reported by the EU Member States to support this baseline survey are presented in three data models. The results of the survey should be reported using the EFSA reporting system.
Collapse
|
6
|
Yang L, Yu P, Wang J, Zhao T, Zhao Y, Pan Y, Chen L. Genomic and Transcriptomic Analyses Reveal Multiple Strategies for Vibrio parahaemolyticus to Tolerate Sub-Lethal Concentrations of Three Antibiotics. Foods 2024; 13:1674. [PMID: 38890902 PMCID: PMC11171697 DOI: 10.3390/foods13111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Vibrio parahaemolyticus can cause acute gastroenteritis, wound infections, and septicemia in humans. The overuse of antibiotics in aquaculture may lead to a high incidence of the multidrug-resistant (MDR) pathogen. Nevertheless, the genome evolution of V. parahaemolyticus in aquatic animals and the mechanism of its antibiotic tolerance remain to be further deciphered. Here, we investigated the molecular basis of the antibiotic tolerance of V. parahaemolyticus isolates (n = 3) originated from shellfish and crustaceans using comparative genomic and transcriptomic analyses. The genome sequences of the V. parahaemolyticus isolates were determined (5.0-5.3 Mb), and they contained 4709-5610 predicted protein-encoding genes, of which 823-1099 genes were of unknown functions. Comparative genomic analyses revealed a number of mobile genetic elements (MGEs, n = 69), antibiotic resistance-related genes (n = 7-9), and heavy metal tolerance-related genes (n = 2-4). The V. parahaemolyticus isolates were resistant to sub-lethal concentrations (sub-LCs) of ampicillin (AMP, 512 μg/mL), kanamycin (KAN, 64 μg/mL), and streptomycin (STR, 16 μg/mL) (p < 0.05). Comparative transcriptomic analyses revealed that there were significantly altered metabolic pathways elicited by the sub-LCs of the antibiotics (p < 0.05), suggesting the existence of multiple strategies for antibiotic tolerance in V. parahaemolyticus. The results of this study enriched the V. parahaemolyticus genome database and should be useful for controlling the MDR pathogen worldwide.
Collapse
Affiliation(s)
- Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Juanjuan Wang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Taixia Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
| | - Yong Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingjie Pan
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
7
|
Zhang K, Cao F, Zhao Y, Wang H, Chen L. Antibacterial Ingredients and Modes of the Methanol-Phase Extract from the Fruit of Amomum villosum Lour. PLANTS (BASEL, SWITZERLAND) 2024; 13:834. [PMID: 38592864 PMCID: PMC10975419 DOI: 10.3390/plants13060834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Epidemics of infectious diseases threaten human health and society stability. Pharmacophagous plants are rich in bioactive compounds that constitute a safe drug library for antimicrobial agents. In this study, we have deciphered for the first time antibacterial ingredients and modes of the methanol-phase extract (MPE) from the fruit of Amomum villosum Lour. The results have revealed that the antibacterial rate of the MPE was 63.64%, targeting 22 species of common pathogenic bacteria. The MPE was further purified by high performance liquid chromatography (Prep-HPLC), and three different constituents (Fractions 1-3) were obtained. Of these, the Fraction 2 treatment significantly increased the cell membrane fluidity and permeability, reduced the cell surface hydrophobicity, and damaged the integrity of the cell structure, leading to the leakage of cellular macromolecules of Gram-positive and Gram-negative pathogens (p < 0.05). Eighty-nine compounds in Fraction 2 were identified by ultra HPLC-mass spectrometry (UHPLC-MS) analysis, among which 4-hydroxyphenylacetylglutamic acid accounted for the highest 30.89%, followed by lubiprostone (11.86%), miltirone (10.68%), and oleic acid (10.58%). Comparative transcriptomics analysis revealed significantly altered metabolic pathways in the representative pathogens treated by Fraction 2 (p < 0.05), indicating multiple antibacterial modes. Overall, this study first demonstrates the antibacterial activity of the MPE from the fruit of A. villosum Lour., and should be useful for its application in the medicinal and food preservative industries against common pathogens.
Collapse
Affiliation(s)
- Kaiyue Zhang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fengfeng Cao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yueliang Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hengbin Wang
- Department of Internal Medicine, Division of Hematology, Oncology, and Palliative Care, Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
8
|
Zhao H, Xu Y, Yang L, Wang Y, Li M, Chen L. Biological Function of Prophage-Related Gene Cluster Δ VpaChn25_RS25055~Δ VpaChn25_0714 of Vibrio parahaemolyticus CHN25. Int J Mol Sci 2024; 25:1393. [PMID: 38338671 PMCID: PMC10855970 DOI: 10.3390/ijms25031393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Vibrio parahaemolyticus is the primary foodborne pathogen known to cause gastrointestinal infections in humans. Nevertheless, the molecular mechanisms of V. parahaemolyticus pathogenicity are not fully understood. Prophages carry virulence and antibiotic resistance genes commonly found in Vibrio populations, and they facilitate the spread of virulence and the emergence of pathogenic Vibrio strains. In this study, we characterized three such genes, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055, within the largest prophage gene cluster in V. parahaemolyticus CHN25. The deletion mutants ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 were derived with homologous recombination, and the complementary mutants ΔVpaChn25_0713-com, ΔVpaChn25_0714-com, ΔVpaChn25_RS25055-com, ΔVpaChn25_RS25055-0713-0714-com were also constructed. In the absence of the VpaChn25_RS25055, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055-0713-0714 genes, the mutants showed significant reductions in low-temperature survivability and biofilm formation (p < 0.001). The ΔVpaChn25_0713, ΔVpaChn25_RS25055, and ΔVpaChn25_RS25055-0713-0714 mutants were also significantly defective in swimming motility (p < 0.001). In the Caco-2 model, the above four mutants attenuated the cytotoxic effects of V. parahaemolyticus CHN25 on human intestinal epithelial cells (p < 0.01), especially the ΔVpaChn25_RS25055 and ΔVpaChn25_RS25055-0713-0714 mutants. Transcriptomic analysis showed that 15, 14, 8, and 11 metabolic pathways were changed in the ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 mutants, respectively. We labeled the VpaChn25_RS25055 gene with superfolder green fluorescent protein (sfGFP) and found it localized at both poles of the bacteria cell. In addition, we analyzed the evolutionary origins of the above genes. In summary, the prophage genes VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055 enhance V. parahaemolyticus CHN25's survival in the environment and host. Our work improves the comprehension of the synergy between prophage-associated genes and the evolutionary process of V. parahaemolyticus.
Collapse
Affiliation(s)
- Hui Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Yingwei Xu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Yaping Wang
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, VA 23284, USA;
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| |
Collapse
|
9
|
Zhang B, Xu J, Sun M, Yu P, Ma Y, Xie L, Chen L. Comparative secretomic and proteomic analysis reveal multiple defensive strategies developed by Vibrio cholerae against the heavy metal (Cd 2+, Ni 2+, Pb 2+, and Zn 2+) stresses. Front Microbiol 2023; 14:1294177. [PMID: 37954246 PMCID: PMC10637575 DOI: 10.3389/fmicb.2023.1294177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Vibrio cholerae is a common waterborne pathogen that can cause pandemic cholera in humans. The bacterium with heavy metal-tolerant phenotypes is frequently isolated from aquatic products, however, its tolerance mechanisms remain unclear. In this study, we investigated for the first time the response of such V. cholerae isolates (n = 3) toward the heavy metal (Cd2+, Ni2+, Pb2+, and Zn2+) stresses by comparative secretomic and proteomic analyses. The results showed that sublethal concentrations of the Pb2+ (200 μg/mL), Cd2+ (12.5 μg/mL), and Zn2+ (50 μg/mL) stresses for 2 h significantly decreased the bacterial cell membrane fluidity, but increased cell surface hydrophobicity and inner membrane permeability, whereas the Ni2+ (50 μg/mL) stress increased cell membrane fluidity (p < 0.05). The comparative secretomic and proteomic analysis revealed differentially expressed extracellular and intracellular proteins involved in common metabolic pathways in the V. cholerae isolates to reduce cytotoxicity of the heavy metal stresses, such as biosorption, transportation and effluxing, extracellular sequestration, and intracellular antioxidative defense. Meanwhile, different defensive strategies were also found in the V. cholerae isolates to cope with different heavy metal damage. Remarkably, a number of putative virulence and resistance-associated proteins were produced and/or secreted by the V. cholerae isolates under the heavy metal stresses, suggesting an increased health risk in the aquatic products.
Collapse
Affiliation(s)
- Beiyu Zhang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingjing Xu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Meng Sun
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yuming Ma
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Molina-Quiroz RC, Silva-Valenzuela CA. Interactions of Vibrio phages and their hosts in aquatic environments. Curr Opin Microbiol 2023; 74:102308. [PMID: 37062175 DOI: 10.1016/j.mib.2023.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 04/18/2023]
Abstract
Bacteriophages (phages) are viruses that specifically infect bacteria. These viruses were discovered a century ago and have been used as a model system in microbial genetics and molecular biology. In order to survive, bacteria have to quickly adapt to phage challenges in their natural settings. In turn, phages continuously develop/evolve mechanisms for battling host defenses. A deeper understanding of the arms race between bacteria and phages is essential for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections. Vibrio species and their phages (vibriophages) are a suitable model to study these interactions. Phages are highly ubiquitous in aquatic environments and Vibrio are waterborne bacteria that must survive the constant attack by phages for successful transmission to their hosts. Here, we review relevant literature from the past two years to delve into the molecular interactions of Vibrio species and their phages in aquatic niches.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | | |
Collapse
|
11
|
Tang Y, Yu P, Chen L. Identification of Antibacterial Components and Modes in the Methanol-Phase Extract from a Herbal Plant Potentilla kleiniana Wight et Arn. Foods 2023; 12:foods12081640. [PMID: 37107435 PMCID: PMC10137656 DOI: 10.3390/foods12081640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The increase in bacterial resistance and the decline in the effectiveness of antimicrobial agents are challenging issues for the control of infectious diseases. Traditional Chinese herbal plants are potential sources of new or alternative medicine. Here, we identified antimicrobial components and action modes of the methanol-phase extract from an edible herb Potentilla kleiniana Wight et Arn, which had a 68.18% inhibition rate against 22 species of common pathogenic bacteria. The extract was purified using preparative high-performance liquid chromatography (Prep-HPLC), and three separated fragments (Fragments 1-3) were obtained. Fragment 1 significantly elevated cell surface hydrophobicity and membrane permeability but reduced membrane fluidity, disrupting the cell integrity of the Gram-negative and Gram-positive pathogens tested (p < 0.05). Sixty-six compounds in Fragment 1 were identified using Ultra-HPLC and mass spectrometry (UHPLC-MS). The identified oxymorphone (6.29%) and rutin (6.29%) were predominant in Fragment 1. Multiple cellular metabolic pathways were altered by Fragment 1, such as the repressed ABC transporters, protein translation, and energy supply in two representative Gram-negative and Gram-positive strains (p < 0.05). Overall, this study demonstrates that Fragment 1 from P. kleiniana Wight et Arn is a promising candidate for antibacterial medicine and food preservatives.
Collapse
Affiliation(s)
- Yingping Tang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
12
|
Gummalla VS, Zhang Y, Liao YT, Wu VCH. The Role of Temperate Phages in Bacterial Pathogenicity. Microorganisms 2023; 11:541. [PMID: 36985115 PMCID: PMC10052878 DOI: 10.3390/microorganisms11030541] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria and archaea and are classified as virulent or temperate phages based on their life cycles. A temperate phage, also known as a lysogenic phage, integrates its genomes into host bacterial chromosomes as a prophage. Previous studies have indicated that temperate phages are beneficial to their susceptible bacterial hosts by introducing additional genes to bacterial chromosomes, creating a mutually beneficial relationship. This article reviewed three primary ways temperate phages contribute to the bacterial pathogenicity of foodborne pathogens, including phage-mediated virulence gene transfer, antibiotic resistance gene mobilization, and biofilm formation. This study provides insights into mechanisms of phage-bacterium interactions in the context of foodborne pathogens and provokes new considerations for further research to avoid the potential of phage-mediated harmful gene transfer in agricultural environments.
Collapse
Affiliation(s)
| | | | | | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| |
Collapse
|
13
|
Liu Y, Tang Y, Ren S, Chen L. Antibacterial Components and Modes of the Methanol-Phase Extract from Commelina communis Linn. PLANTS (BASEL, SWITZERLAND) 2023; 12:890. [PMID: 36840240 PMCID: PMC9966474 DOI: 10.3390/plants12040890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Infectious diseases caused by pathogenic bacteria severely threaten human health. Traditional Chinese herbs are potential sources of new or alternative medicine. In this study, we analyzed for the first time antibacterial substances in the methanol-phase extract from a traditional Chinese herb-Commelina communis Linn-which showed an inhibition rate of 58.33% against 24 species of common pathogenic bacteria. The extract was further purified using preparative high-performance liquid chromatography (Prep-HPLC), which generated four single fragments (Fragments 1 to 4). The results revealed that Fragment 1 significantly increased bacterial cell surface hydrophobicity and membrane permeability and decreased membrane fluidity, showing disruptive effects on cell integrity of Gram-positive and Gram-negative bacteria, such as Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, and Salmonella enterica subsp., compared to the control groups (p < 0.05). In sum, 65 compounds with known functions in Fragment 1 were identified using liquid chromatography and mass spectrometry (LC-MS), of which quercetin-3-o-glucuronide was predominant (19.35%). Comparative transcriptomic analysis revealed multiple altered metabolic pathways mediated by Fragment 1, such as inhibited ABC transporters, ribosome, citrate cycle and oxidative phosphorylation, and upregulated nitrogen metabolism and purine metabolism, thereby resulting in the repressed bacterial growth and even death (p < 0.05). Overall, the results of this study demonstrate that Fragment 1 from C. communis Linn is a promising candidate against common pathogenic bacteria.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingping Tang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shunlin Ren
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, VA 23298, USA
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
14
|
Zhang M, Xue X, Li X, Luo X, Wu Q, Zhang T, Yang W, Hu L, Zhou D, Lu R, Zhang Y. QsvR represses the transcription of polar flagellum genes in Vibrio parahaemolyticus. Microb Pathog 2023; 174:105947. [PMID: 36521654 DOI: 10.1016/j.micpath.2022.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Vibrio parahaemolyticus produces dual flagellar systems, i.e., the sheathed polar flagellum (Pof) and numerous lateral flagella (Laf), both of which are strictly regulated by numerous factors. QsvR is an AraC-type regulator that controls biofilm formation and virulence of V. parahaemolyticus. In the present study, we showed that deletion of qsvR significantly enhanced swimming motility of V. parahaemolyticus, while the swarming motility was not affected by QsvR. QsvR bound to the regulatory DNA regions of flgAMN and flgMN within the Pof gene loci to repress their transcription, whereas it negatively controls the transcription of flgBCDEFGHIJ and flgKL-flaC in an indirect manner. However, over-produced QsvR was also likely to possess the binding activity to the regulatory DNA regions of flgBCDEFGHIJ and flgKL-flaC in a heterologous host. In summary, this work demonstrated that QsvR negatively regulated the swimming motility of V. parahaemolyticus via directly action on the transcription of Pof genes.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China; School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xingfan Xue
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China; School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Qimin Wu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China.
| | - Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China.
| |
Collapse
|
15
|
Molina-Quiroz RC, Camilli A, Silva-Valenzuela CA. Role of Bacteriophages in the Evolution of Pathogenic Vibrios and Lessons for Phage Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:149-173. [PMID: 36792875 PMCID: PMC10587905 DOI: 10.1007/978-3-031-22997-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Viruses of bacteria, i.e., bacteriophages (or phages for short), were discovered over a century ago and have played a major role as a model system for the establishment of the fields of microbial genetics and molecular biology. Despite the relative simplicity of phages, microbiologists are continually discovering new aspects of their biology including mechanisms for battling host defenses. In turn, novel mechanisms of host defense against phages are being discovered at a rapid clip. A deeper understanding of the arms race between bacteria and phages will continue to reveal novel molecular mechanisms and will be important for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections, respectively. Here we delve into the molecular interactions of Vibrio species and phages.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, MA, USA
| | | |
Collapse
|
16
|
Genomic and Transcriptomic Analysis Reveal Multiple Strategies for the Cadmium Tolerance in Vibrio parahaemolyticus N10-18 Isolated from Aquatic Animal Ostrea gigas Thunberg. Foods 2022; 11:foods11233777. [PMID: 36496584 PMCID: PMC9741282 DOI: 10.3390/foods11233777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
The waterborne Vibrio parahaemolyticus can cause acute gastroenteritis, wound infection, and septicemia in humans. Pollution of heavy metals in aquatic environments is proposed to link high incidence of the multidrug-resistant (MDR) pathogen. Nevertheless, the genome evolution and heavy metal tolerance mechanism of V. parahaemolyticus in aquatic animals remain to be largely unveiled. Here, we overcome the limitation by characterizing an MDR V. parahaemolyticus N10-18 isolate with high cadmium (Cd) tolerance using genomic and transcriptomic techniques. The draft genome sequence (4,910,080 bp) of V. parahaemolyticus N10-18 recovered from Ostrea gigas Thunberg was determined, and 722 of 4653 predicted genes had unknown function. Comparative genomic analysis revealed mobile genetic elements (n = 11) and heavy metal and antibiotic-resistance genes (n = 38 and 7). The bacterium significantly changed cell membrane structure to resist the Cd2+ (50 μg/mL) stress (p < 0.05). Comparative transcriptomic analysis revealed seven significantly altered metabolic pathways elicited by the stress. The zinc/Cd/mercury/lead transportation and efflux and the zinc ATP-binding cassette (ABC) transportation were greatly enhanced; metal and iron ABC transportation and thiamine metabolism were also up-regulated; conversely, propanoate metabolism and ribose and maltose ABC transportation were inhibited (p < 0.05). The results of this study demonstrate multiple strategies for the Cd tolerance in V. parahaemolyticus.
Collapse
|
17
|
Antibacterial Activity and Components of the Methanol-Phase Extract from Rhizomes of Pharmacophagous Plant Alpinia officinarum Hance. Molecules 2022; 27:molecules27134308. [PMID: 35807553 PMCID: PMC9268307 DOI: 10.3390/molecules27134308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
The rhizomes of Alpinia officinarum Hance (known as the smaller galangal) have been used as a traditional medicine for over 1000 years. Nevertheless, little research is available on the bacteriostatic activity of the herb rhizomes. In this study, we employed, for the first time, a chloroform and methanol extraction method to investigate the antibacterial activity and components of the rhizomes of A. officinarum Hance. The results showed that the growth of five species of pathogenic bacteria was significantly inhibited by the galangal methanol-phase extract (GMPE) (p < 0.05). The GMPE treatment changed the bacterial cell surface hydrophobicity, membrane fluidity and/or permeability. Comparative transcriptomic analyses revealed approximately eleven and ten significantly altered metabolic pathways in representative Gram-positive Staphylococcus aureus and Gram-negative Enterobacter sakazakii pathogens, respectively (p < 0.05), demonstrating different antibacterial action modes. The GMPE was separated further using a preparative high-performance liquid chromatography (Prep-HPLC) technique, and approximately 46 and 45 different compounds in two major component fractions (Fractions 1 and 4, respectively) were identified using ultra-HPLC combined with mass spectrometry (UHPLC-MS) techniques. o-Methoxy cinnamaldehyde (40.12%) and p-octopamine (62.64%) were the most abundant compounds in Fractions 1 and 4, respectively. The results of this study provide data for developing natural products from galangal rhizomes against common pathogenic bacteria.
Collapse
|
18
|
Nawel Z, Rima O, Amira B. An overview on Vibrio temperate phages: Integration mechanisms, pathogenicity, and lysogeny regulation. Microb Pathog 2022; 165:105490. [DOI: 10.1016/j.micpath.2022.105490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022]
|
19
|
Xu Y, Yang L, Wang Y, Zhu Z, Yan J, Qin S, Chen L. Prophage-encoded gene VpaChn25_0734 amplifies ecological persistence of Vibrio parahaemolyticus CHN25. Curr Genet 2022; 68:267-287. [PMID: 35064802 PMCID: PMC8783578 DOI: 10.1007/s00294-022-01229-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Abstract
Vibrio parahaemolyticus is a waterborne pathogen that can cause acute gastroenteritis, wound infection, and septicemia in humans. The molecular basis of its pathogenicity is not yet fully understood. Phages are found most abundantly in aquatic environments and play a critical role in horizontal gene transfer. Nevertheless, current literature on biological roles of prophage-encoded genes remaining in V. parahaemolyticus is rare. In this study, we characterized one such gene VpaChn25_0734 (543-bp) in V. parahaemolyticus CHN25 genome. A deletion mutant ΔVpaChn25_0734 (543-bp) was obtained by homologous recombination, and a revertant ΔVpaChn25_0734-com (543-bp) was also constructed. The ΔVpaChn25_0734 (543-bp) mutant was defective in growth and swimming mobility particularly at lower temperatures and/or pH 7.0–8.5. Cell surface hydrophobicity and biofilm formation were significantly decreased in the ΔVpaChn25_0734 (543-bp) mutant (p < 0.05). Based on the in vitro Caco-2 cell model, the deletion of VpaChn25_0734 (543-bp) gene significantly reduced the cytotoxicity of V. parahaemolyticus CHN25 to human intestinal epithelial cells (p < 0.05). Comparative secretomic and transcriptomic analyses revealed a slightly increased extracellular proteins, and thirteen significantly changed metabolic pathways in the ΔVpaChn25_0734 (543-bp) mutant, showing down-regulated carbon source transport and utilization, biofilm formation, and type II secretion system (p < 0.05), consistent with the observed defective phenotypes. Taken, the prophage-encoded gene VpaChn25_0734 (543-bp) enhanced V. parahaemolyticus CHN25 fitness for survival in the environment and the host. The results in this study facilitate better understanding of pathogenesis and genome evolution of V. parahaemolyticus, the leading sea foodborne pathogen worldwide.
Collapse
Affiliation(s)
- Yingwei Xu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaping Wang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, VA, USA
| | - Zhuoying Zhu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jizhou Yan
- College of Fishers and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Si Qin
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
20
|
Liu Y, Yang L, Liu P, Jin Y, Qin S, Chen L. Identification of Antibacterial Components in the Methanol-Phase Extract from Edible Herbaceous Plant Rumex madaio Makino and Their Antibacterial Action Modes. Molecules 2022; 27:molecules27030660. [PMID: 35163925 PMCID: PMC8839378 DOI: 10.3390/molecules27030660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Outbreaks and prevalence of infectious diseases worldwide are some of the major contributors to morbidity and morbidity in humans. Pharmacophageous plants are the best source for searching antibacterial compounds with low toxicity to humans. In this study, we identified, for the first time, antibacterial components and action modes of methanol-phase extract from such one edible herbaceous plant Rumex madaio Makino. The bacteriostatic rate of the extract was 75% against 23 species of common pathogenic bacteria. The extract was further purified using the preparative high-performance liquid chromatography (Prep-HPLC) technique, and five separated componential complexes (CC) were obtained. Among these, the CC 1 significantly increased cell surface hydrophobicity and membrane permeability and decreased membrane fluidity, which damaged cell structure integrity of Gram-positive and -negative pathogens tested. A total of 58 different compounds in the extract were identified using ultra-HPLC and mass spectrometry (UHPLC-MS) techniques. Comparative transcriptomic analyses revealed a number of differentially expressed genes and various changed metabolic pathways mediated by the CC1 action, such as down-regulated carbohydrate transport and/or utilization and energy metabolism in four pathogenic strains tested. Overall, the results in this study demonstrated that the CC1 from R. madaio Makino are promising candidates for antibacterial medicine and human health care products.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (L.Y.); (P.L.); (Y.J.)
| | - Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (L.Y.); (P.L.); (Y.J.)
| | - Pingping Liu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (L.Y.); (P.L.); (Y.J.)
| | - Yinzhe Jin
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (L.Y.); (P.L.); (Y.J.)
| | - Si Qin
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (S.Q.); (L.C.)
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (L.Y.); (P.L.); (Y.J.)
- Correspondence: (S.Q.); (L.C.)
| |
Collapse
|
21
|
Pazhani GP, Chowdhury G, Ramamurthy T. Adaptations of Vibrio parahaemolyticus to Stress During Environmental Survival, Host Colonization, and Infection. Front Microbiol 2021; 12:737299. [PMID: 34690978 PMCID: PMC8530187 DOI: 10.3389/fmicb.2021.737299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023] Open
Abstract
Vibrio parahaemolyticus (Vp) is an aquatic Gram-negative bacterium that may infect humans and cause gastroenteritis and wound infections. The first pandemic of Vp associated infection was caused by the serovar O3:K6 and epidemics caused by the other serovars are increasingly reported. The two major virulence factors, thermostable direct hemolysin (TDH) and/or TDH-related hemolysin (TRH), are associated with hemolysis and cytotoxicity. Vp strains lacking tdh and/or trh are avirulent and able to colonize in the human gut and cause infection using other unknown factors. This pathogen is well adapted to survive in the environment and human host using several genetic mechanisms. The presence of prophages in Vp contributes to the emergence of pathogenic strains from the marine environment. Vp has two putative type-III and type-VI secretion systems (T3SS and T6SS, respectively) located on both the chromosomes. T3SS play a crucial role during the infection process by causing cytotoxicity and enterotoxicity. T6SS contribute to adhesion, virulence associated with interbacterial competition in the gut milieu. Due to differential expression, type III secretion system 2 (encoded on chromosome-2, T3SS2) and other genes are activated and transcribed by interaction with bile salts within the host. Chromosome-1 encoded T6SS1 has been predominantly identified in clinical isolates. Acquisition of genomic islands by horizontal gene transfer provides enhanced tolerance of Vp toward several antibiotics and heavy metals. Vp consists of evolutionarily conserved targets of GTPases and kinases. Expression of these genes is responsible for the survival of Vp in the host and biochemical changes during its survival. Advanced genomic analysis has revealed that various genes are encoded in Vp pathogenicity island that control and expression of virulence in the host. In the environment, the biofilm gene expression has been positively correlated to tolerance toward aerobic, anaerobic, and micro-aerobic conditions. The genetic similarity analysis of toxin/antitoxin systems of Escherichia coli with VP genome has shown a function that could induce a viable non-culturable state by preventing cell division. A better interpretation of the Vp virulence and other mechanisms that support its environmental fitness are important for diagnosis, treatment, prevention and spread of infections. This review identifies some of the common regulatory pathways of Vp in response to different stresses that influence its survival, gut colonization and virulence.
Collapse
Affiliation(s)
- Gururaja Perumal Pazhani
- School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Goutam Chowdhury
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|