1
|
Romero-Neto I, de Almeida TM, Zugman T, Piovan L, Molento MB. Ovicidal activity of diaryl dichalcogenides and ivermectin on Fasciola hepatica: A novel candidate for a blending-based therapeutic strategy. Acta Trop 2024; 258:107363. [PMID: 39153647 DOI: 10.1016/j.actatropica.2024.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Fasciolosis is a food and waterborne disease caused by Fasciola spp., representing a global health burden to various hosts, including humans and other animals. This study investigates the in vitro activity of tellurium- and selenium-containing diaryl dichalcogenides: diacetal ditelluride (LQ07), diacetal diselenide (LQ62), and diacetyl diselenide (LQ68) alone and in combination with ivermectin (IVM) against eggs of Fasciola hepatica. The eggs were exposed for 12 h with each organochalcogen (OC) (0.1 - 2 mmol l-1) and IVM (0.01 - 2 mmol l-1) following an incubation of 15 days, allowing embryonation. The inhibitory concentration of 50 % (IC50) of each OC or IVM was tested with the IC10, IC30, and IC50 of IVM or each OC, respectively. LQ07, LQ62, and LQ68, as well as IVM, demonstrated a concentration-dependent ovicidal activity. The peak ovicidal activity of 99.74 % was achieved when IVM was tested at 2.0 mmol l-1. LQ62 and LQ68 demonstrated greater ovicidal activity, having an IC50 < 0.32 mmol l-1 being 6.25-fold more toxic than IVM alone. The percentage of dead eggs was significantly higher in the IVM group (early mortality), as Se-containing OCs led to the (miracidia) embryonation of the eggs with no hatching (late mortality). Blending Se-containing OCs and IVM showed an additive effect of up to 27 % against F. hepatica eggs. The present data contribute to the potential use of blending-based therapeutic strategies to combat F. hepatica infections in eradication programs worldwide. The combinations may also act against multidrug-resistant strains, reinstating drug-based parasite control.
Collapse
Affiliation(s)
- Irineu Romero-Neto
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Paraná, Curitiba, Paraná 80035-050, Brazil
| | - Thayany Magalhães de Almeida
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Paraná, Curitiba, Paraná 80035-050, Brazil
| | - Tay Zugman
- Laboratory of Chemical and Enzymatic Synthesis, Department of Chemistry, Federal University of Paraná, Curitiba, Paraná 81531-980, Brazil
| | - Leandro Piovan
- Laboratory of Chemical and Enzymatic Synthesis, Department of Chemistry, Federal University of Paraná, Curitiba, Paraná 81531-980, Brazil
| | - Marcelo Beltrão Molento
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Paraná, Curitiba, Paraná 80035-050, Brazil.
| |
Collapse
|
2
|
Morán-Serradilla C, Plano D, Sharma AK, Sanmartín C. Following the Trace of Cyclodextrins on the Selenium and Tellurium Odyssey. Int J Mol Sci 2024; 25:7799. [PMID: 39063040 PMCID: PMC11277100 DOI: 10.3390/ijms25147799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
There is an urgent need to develop safer and more effective modalities for the treatment of numerous pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Over the past decades, cyclodextrins (CDs) have gathered great attention as potential drug carriers due to their ability to enhance their bioactivities and properties. Likewise, selenium (Se) and tellurium (Te) have been extensively studied during the last decades due to their possible therapeutical applications. Although there is limited research on the relationship between Se and Te and CDs, herein, we highlight different representative examples of the advances related to this topic as well as give our view on the future directions of this emerging area of research. This review encompasses three different aspects of this relationship: (1) modification of the structure of the different CDs; (2) formation of host-guest interaction complexes of naïve CDs with Se and Te derivatives in order to overcome specific limitations of the latter; and (3) the use of CDs as catalysts to achieve novel Se and Te compounds.
Collapse
Affiliation(s)
- Cristina Morán-Serradilla
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (C.M.-S.); (D.P.)
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (C.M.-S.); (D.P.)
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA;
- Penn State Cancer Institute, 400 University Drive, Hershey, PA 17033, USA
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (C.M.-S.); (D.P.)
| |
Collapse
|
3
|
Morán-Serradilla C, Plano D, Sanmartín C, Sharma AK. Selenization of Small Molecule Drugs: A New Player on the Board. J Med Chem 2024; 67:7759-7787. [PMID: 38716896 DOI: 10.1021/acs.jmedchem.3c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
There is an urgent need to develop safer and more effective modalities for the treatment of a wide range of pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Throughout the years, selenium (Se) has attracted a great deal of attention due to its important role in human health. Besides, a growing body of work has unveiled that the inclusion of Se motifs into a great number of molecules is a promising strategy for obtaining novel therapeutic agents. In the current Perspective, we have gathered the most recent literature related to the incorporation of different Se moieties into the scaffolds of a wide range of known drugs and their feasible pharmaceutical applications. In addition, we highlight different representative examples as well as provide our perspective on Se drugs and the possible future directions, promises, opportunities, and challenges of this ground-breaking area of research.
Collapse
Affiliation(s)
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
- Penn State Cancer Institute, 400 University Drive,Hershey, Pennsylvania 17033, United States
| |
Collapse
|
4
|
Zhou Y, Phelps GA, Mangrum MM, McLeish J, Phillips EK, Lou J, Ancajas CF, Rybak JM, Oelkers PM, Lee RE, Best MD, Reynolds TB. The small molecule CBR-5884 inhibits the Candida albicans phosphatidylserine synthase. mBio 2024; 15:e0063324. [PMID: 38587428 PMCID: PMC11077991 DOI: 10.1128/mbio.00633-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Systemic infections by Candida spp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, from Candida albicans is a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed an in vitro nucleotidase-coupled malachite-green-based high throughput assay for purified C. albicans Cho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising average Z' score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects against C. albicans cells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disrupting in vivo Cho1 function by inducing phenotypes consistent with the cho1∆∆ mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with a Ki of 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCE Fungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with a Ki value of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Gregory A. Phelps
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jemma McLeish
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Elise K. Phillips
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Jeffrey M. Rybak
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Peter M. Oelkers
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Richard E. Lee
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Michael D. Best
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
5
|
Alves de Lima e Silva A, Rio-Tinto A. Ebselen: A Promising Repurposing Drug to Treat Infections Caused by Multidrug-Resistant Microorganisms. Interdiscip Perspect Infect Dis 2024; 2024:9109041. [PMID: 38586592 PMCID: PMC10998725 DOI: 10.1155/2024/9109041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial multiresistance to drugs is a rapidly growing global phenomenon. New resistance mechanisms have been described in different bacterial pathogens, threatening the effective treatment of even common infectious diseases. The problem worsens in infections associated with biofilms because, in addition to the pathogen's multiresistance, the biofilm provides a barrier that prevents antimicrobial access. Several "non-antibiotic" drugs have antimicrobial activity, even though it is not their primary therapeutic purpose. However, due to the urgent need to develop effective antimicrobials to treat diseases caused by multidrug-resistant pathogens, there has been an increase in research into "non-antibiotic" drugs to offer an alternative therapy through the so-called drug repositioning or repurposing. The prospect of new uses for existing drugs has the advantage of reducing the time and effort required to develop new compounds. Moreover, many drugs are already well characterized regarding toxicity and pharmacokinetic/pharmacodynamic properties. Ebselen has shown promise for use as a repurposing drug for antimicrobial purposes. It is a synthetic organoselenium with anti-inflammatory, antioxidant, and cytoprotective activity. A very attractive factor for using ebselen is that, in addition to potent antimicrobial activity, its minimum inhibitory concentration is very low for microbial pathogens.
Collapse
Affiliation(s)
- Agostinho Alves de Lima e Silva
- Laboratory of Biology and Physiology of Microorganisms, Biomedical Institute, DMP, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-030, Brazil
| | - André Rio-Tinto
- Laboratory of Pathogenic Cocci and Microbiota, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, Brazil
| |
Collapse
|
6
|
Thabet NM, Abdel-Rafei MK, Amin MM. Fractionated whole body γ-irradiation aggravates arthritic severity via boosting NLRP3 and RANKL expression in adjuvant-induced arthritis model: the mitigative potential of ebselen. Inflammopharmacology 2023:10.1007/s10787-023-01238-5. [PMID: 37131046 DOI: 10.1007/s10787-023-01238-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/16/2023] [Indexed: 05/04/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease associated with oxidative stress that causes excruciating pain, discomfort, and joint destruction. Ebselen (EB), a synthesized versatile organo-selenium compound, protects cells from reactive oxygen species (ROS)-induced injury by mimicking glutathione peroxidase (GPx) action. This study aimed to investigate the antioxidant and anti-inflammatory effects of EB in an arthritic irradiated model. This goal was achieved by subjecting adjuvant-induced arthritis (AIA) rats to fractionated whole body γ-irradiation (2 Gy/fraction once per week for 3 consecutive weeks, for a total dose of 6 Gy) and treating them with EB (20 mg/kg/day, p.o) or methotrexate (MTX; 0.05 mg/kg; twice/week, i.p) as a reference anti-RA drug. The arthritic clinical signs, oxidative stress and antioxidant biomarkers, inflammatory response, expression of NOD-like receptor protein-3 (NLRP-3) inflammasome, receptor activator of nuclear factor κB ligand (RANKL), nuclear factor-κB (NF-κB), apoptotic indicators (caspase 1 and caspase 3), cartilage integrity marker (collagen-II), and histopathological examination of ankle joints were assessed. EB notably improved the severity of arthritic clinical signs, alleviated joint histopathological lesions, modulated oxidative stress and inflammation in serum and synovium, as well as reduced NLRP-3, RANKL, and caspase3 expression while boosting collagen-II expression in the ankle joints of arthritic and arthritic irradiated rats with comparable potency to MTX. Our findings suggest that EB, through its antioxidant and anti-inflammatory properties, has anti-arthritic and radioprotective properties in an arthritic irradiated model.
Collapse
Affiliation(s)
- Noura M Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, 3 Ahmed El-Zomor Street, Nasr City, P.O. Box 29, Cairo, 11787, Egypt.
| | - Mohamed K Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, 3 Ahmed El-Zomor Street, Nasr City, P.O. Box 29, Cairo, 11787, Egypt.
| | - Mohamed M Amin
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Egypt
| |
Collapse
|
7
|
Li X, Shi Q, Xu H, Xiong Y, Wang C, Le L, Lian J, Wu G, Peng F, Liu Q, Du X. Ebselen Interferes with Alzheimer’s Disease by Regulating Mitochondrial Function. Antioxidants (Basel) 2022; 11:antiox11071350. [PMID: 35883841 PMCID: PMC9312019 DOI: 10.3390/antiox11071350] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: With unknown causes and no effective treatment available, Alzheimer’s disease (AD) places enormous pressure on families and society. Our previous study had shown that Ebselen at a high concentration (10.94 μM) improved the cognition of triple-transgenic AD (3×Tg-AD) mice and alleviated the related pathological indicators but showed toxicity to the mice. Here, we dedicated to study the therapeutic effect and molecular mechanism of Ebselen at a much lower concentration on 3×Tg-AD mice. (2) Methods: Various behavioral experiments were applied to detect the behavioral ability of mice. Western blot, thioflavin T staining and a transmission electron microscope were used to evaluate the pathology of AD mice. The mitochondrial membrane potential and respiration were assessed with the corresponding assay kit. (3) Results: Ebselen remarkably increased cognitive ability of AD mice, eliminated β-Amyloid (Aβ) oligomers and recovered the synaptic damage in AD mice brain. In addition, the destroyed mitochondrial morphologies and function were repaired by Ebselen through ameliorating mitochondrial energy metabolism, mitochondrial biogenesis and mitochondrial fusion/fission balance in N2a-SW cells and brain tissues of AD mice. (4) Conclusions: This research indicated that Ebselen might exert its therapeutic effect via protecting mitochondria in AD.
Collapse
Affiliation(s)
- Xuexia Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Qingqing Shi
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an 710032, China;
| | - Hao Xu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
| | - Yufang Xiong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
| | - Chao Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China;
| | - Linfeng Le
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
| | - Junliang Lian
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
| | - Guoli Wu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
| | - Feiyuan Peng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
| | - Qiong Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiubo Du
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
8
|
Yan K, Stanley M, Kowalski B, Raimi OG, Ferenbach AT, Wei P, Fang W, van Aalten DMF. Genetic validation of Aspergillus fumigatus phosphoglucomutase as a viable therapeutic target in invasive aspergillosis. J Biol Chem 2022; 298:102003. [PMID: 35504355 PMCID: PMC9168620 DOI: 10.1016/j.jbc.2022.102003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/09/2023] Open
Abstract
Aspergillus fumigatus is the causative agent of invasive aspergillosis, an infection with mortality rates of up to 50%. The glucan-rich cell wall of A. fumigatus is a protective structure that is absent from human cells and is a potential target for antifungal treatments. Glucan is synthesized from the donor uridine diphosphate glucose, with the conversion of glucose-6-phosphate to glucose-1-phosphate by the enzyme phosphoglucomutase (PGM) representing a key step in its biosynthesis. Here, we explore the possibility of selectively targeting A. fumigatus PGM (AfPGM) as an antifungal treatment strategy. Using a promoter replacement strategy, we constructed a conditional pgm mutant and revealed that pgm is required for A. fumigatus growth and cell wall integrity. In addition, using a fragment screen, we identified the thiol-reactive compound isothiazolone fragment of PGM as targeting a cysteine residue not conserved in the human ortholog. Furthermore, through scaffold exploration, we synthesized a para-aryl derivative (ISFP10) and demonstrated that it inhibits AfPGM with an IC50 of 2 μM and exhibits 50-fold selectivity over the human enzyme. Taken together, our data provide genetic validation of PGM as a therapeutic target and suggest new avenues for inhibiting AfPGM using covalent inhibitors that could serve as tools for chemical validation.
Collapse
Affiliation(s)
- Kaizhou Yan
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mathew Stanley
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Bartosz Kowalski
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Olawale G Raimi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andrew T Ferenbach
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pingzhen Wei
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|