1
|
Hetta HF, Ahmed R, Ramadan YN, Fathy H, Khorshid M, Mabrouk MM, Hashem M. Gut virome: New key players in the pathogenesis of inflammatory bowel disease. World J Methodol 2025; 15:92592. [DOI: 10.5662/wjm.v15.i2.92592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 11/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory illness of the intestine. While the mechanism underlying the pathogenesis of IBD is not fully understood, it is believed that a complex combination of host immunological response, environmental exposure, particularly the gut microbiota, and genetic susceptibility represents the major determinants. The gut virome is a group of viruses found in great frequency in the gastrointestinal tract of humans. The gut virome varies greatly among individuals and is influenced by factors including lifestyle, diet, health and disease conditions, geography, and urbanization. The majority of research has focused on the significance of gut bacteria in the progression of IBD, although viral populations represent an important component of the microbiome. We conducted this review to highlight the viral communities in the gut and their expected roles in the etiopathogenesis of IBD regarding published research to date.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Division of Microbiology, Immunology and Biotechnology, Faculty of pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Yasmin N Ramadan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Hayam Fathy
- Department of Internal Medicine, Division Hepatogastroenterology, Assiut University, Assiut 71515, Egypt
| | - Mohammed Khorshid
- Department of Clinical Research, Egyptian Developers of Gastroenterology and Endoscopy Foundation, Cairo 11936, Egypt
| | - Mohamed M Mabrouk
- Department of Internal Medicine, Faculty of Medicine. Tanta University, Tanta 31527, Egypt
| | - Mai Hashem
- Department of Tropical Medicine, Gastroenterology and Hepatology, Assiut University Hospital, Assiut 71515, Egypt
| |
Collapse
|
2
|
Qiao T, Wen XH. Exploring gut microbiota as a novel therapeutic target in Crohn’s disease: Insights and emerging strategies. World J Gastroenterol 2025; 31:100827. [DOI: 10.3748/wjg.v31.i2.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/30/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Extensive research has investigated the etiology of Crohn’s disease (CD), encompassing genetic predisposition, lifestyle factors, and environmental triggers. Recently, the gut microbiome, recognized as the human body’s second-largest gene pool, has garnered significant attention for its crucial role in the pathogenesis of CD. This paper investigates the mechanisms underlying CD, focusing on the role of ‘creeping fat’ in disease progression and exploring emerging therapeutic strategies, including fecal microbiota transplantation, enteral nutrition, and therapeutic diets. Creeping fat has been identified as a unique pathological feature of CD and has recently been found to be associated with dysbiosis of the gut microbiome. We characterize this dysbiotic state by identifying key microbiome-bacteria, fungi, viruses, and archaea, and their contributions to CD pathogenesis. Additionally, this paper reviews contemporary therapies, emphasizing the potential of biological therapies like fecal microbiota transplantation and dietary interventions. By elucidating the complex interactions between host-microbiome dynamics and CD pathology, this article aims to advance our understanding of the disease and guide the development of more effective therapeutic strategies for managing CD.
Collapse
Affiliation(s)
- Tong Qiao
- Department of Clinical Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Xian-Hui Wen
- College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
3
|
Shrewsbury JV, Vitus ES, Koziol AL, Nenarokova A, Jess T, Elmahdi R. Comprehensive phage display viral antibody profiling using VirScan: potential applications in chronic immune-mediated disease. J Virol 2024; 98:e0110224. [PMID: 39431820 PMCID: PMC11575288 DOI: 10.1128/jvi.01102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Phage immunoprecipitation sequencing (PhIP-Seq) is a high-throughput platform that uses programmable phage display for serology. VirScan, a specific PhIP-Seq library encoding viral peptides from all known human viruses, enables comprehensive quantification of past viral exposures. We review its use in immune-mediated diseases (IMDs), highlighting its utility in identifying viral exposures in the context of IMD development. Finally, we evaluate its potential for precision medicine by integrating it with other large-scale omics data sets.
Collapse
Affiliation(s)
- Jed Valentiner Shrewsbury
- Faculty of Medicine, Imperial College London, London, United Kingdom
- Ashford and St. Peter's Hospitals NHS Foundation Trust, Chertsey, United Kingdom
| | - Evangelin Shaloom Vitus
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Adam Leslie Koziol
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | - Tine Jess
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Rahma Elmahdi
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
4
|
Haque H, Zehra SW, Shahzaib M, Abbas S, Jaffar N. Beyond bacteria: Role of non-bacterial gut microbiota species in inflammatory bowel disease and colorectal cancer progression. World J Gastroenterol 2024; 30:4078-4082. [PMID: 39351246 PMCID: PMC11439122 DOI: 10.3748/wjg.v30.i36.4078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/11/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
This letter emphasizes the need to expand discussions on gut microbiome's role in inflammatory bowel disease (IBD) and colorectal cancer (CRC) by including the often-overlooked non-bacterial components of the human gut flora. It highlights how viral, fungal and archaeal inhabitants of the gut respond towards gut dys-biosis and contribute to disease progression. Viruses such as bacteriophages target certain bacterial species and modulate the immune system. Other viruses found associated include Epstein-Barr virus, human papillomavirus, John Cunningham virus, cytomegalovirus, and human herpes simplex virus type 6. Fungi such as Candida albicans and Malassezia contribute by forming tissue-invasive filaments and producing inflammatory cytokines, respectively. Archaea, mainly metha-nogens are also found altering the microbial fermentation pathways. This corres-pondence, thus underscores the significance of considering the pathological and physiological mechanisms of the entire spectrum of the gut microbiota to develop effective therapeutic interventions for both IBD and CRC.
Collapse
Affiliation(s)
- Hania Haque
- Department of Medicine, Jinnah Sindh Medical University, Karachi 75510, Sindh, Pakistan
| | - Syeda Warisha Zehra
- Department of Medicine, Jinnah Sindh Medical University, Karachi 75510, Sindh, Pakistan
| | - Mohammad Shahzaib
- Department of Medicine, Jinnah Sindh Medical University, Karachi 75510, Sindh, Pakistan
| | - Saif Abbas
- Department of Medicine, Jinnah Sindh Medical University, Karachi 75510, Sindh, Pakistan
| | - Nazish Jaffar
- Department of Pathology, Jinnah Sindh Medical University, Karachi 75510, Sindh, Pakistan
| |
Collapse
|
5
|
Schwartz J, Capistrano KJ, Gluck J, Hezarkhani A, Naqvi AR. SARS-CoV-2, periodontal pathogens, and host factors: The trinity of oral post-acute sequelae of COVID-19. Rev Med Virol 2024; 34:e2543. [PMID: 38782605 PMCID: PMC11260190 DOI: 10.1002/rmv.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
COVID-19 as a pan-epidemic is waning but there it is imperative to understand virus interaction with oral tissues and oral inflammatory diseases. We review periodontal disease (PD), a common inflammatory oral disease, as a driver of COVID-19 and oral post-acute-sequelae conditions (PASC). Oral PASC identifies with PD, loss of teeth, dysgeusia, xerostomia, sialolitis-sialolith, and mucositis. We contend that PD-associated oral microbial dysbiosis involving higher burden of periodontopathic bacteria provide an optimal microenvironment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These pathogens interact with oral epithelial cells activate molecular or biochemical pathways that promote viral adherence, entry, and persistence in the oral cavity. A repertoire of diverse molecules identifies this relationship including lipids, carbohydrates and enzymes. The S protein of SARS-CoV-2 binds to the ACE2 receptor and is activated by protease activity of host furin or TRMPSS2 that cleave S protein subunits to promote viral entry. However, PD pathogens provide additional enzymatic assistance mimicking furin and augment SARS-CoV-2 adherence by inducing viral entry receptors ACE2/TRMPSS, which are poorly expressed on oral epithelial cells. We discuss the mechanisms involving periodontopathogens and host factors that facilitate SARS-CoV-2 infection and immune resistance resulting in incomplete clearance and risk for 'long-haul' oral health issues characterising PASC. Finally, we suggest potential diagnostic markers and treatment avenues to mitigate oral PASC.
Collapse
Affiliation(s)
- Joel Schwartz
- Department of Oral Medicine and Diagnostic Sciences, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | | | - Joseph Gluck
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Armita Hezarkhani
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Afsar R. Naqvi
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| |
Collapse
|
6
|
Carasso S, Zaatry R, Hajjo H, Kadosh-Kariti D, Ben-Assa N, Naddaf R, Mandelbaum N, Pressman S, Chowers Y, Gefen T, Jeffrey KL, Jofre J, Coyne MJ, Comstock LE, Sharon I, Geva-Zatorsky N. Inflammation and bacteriophages affect DNA inversion states and functionality of the gut microbiota. Cell Host Microbe 2024; 32:322-334.e9. [PMID: 38423015 PMCID: PMC10939037 DOI: 10.1016/j.chom.2024.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 12/11/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Reversible genomic DNA inversions control the expression of numerous gut bacterial molecules, but how this impacts disease remains uncertain. By analyzing metagenomic samples from inflammatory bowel disease (IBD) cohorts, we identified multiple invertible regions where a particular orientation correlated with disease. These include the promoter of polysaccharide A (PSA) of Bacteroides fragilis, which induces regulatory T cells (Tregs) and ameliorates experimental colitis. The PSA promoter was mostly oriented "OFF" in IBD patients, which correlated with increased B. fragilis-associated bacteriophages. Similarly, in mice colonized with a healthy human microbiota and B. fragilis, induction of colitis caused a decline of PSA in the "ON" orientation that reversed as inflammation resolved. Monocolonization of mice with B. fragilis revealed that bacteriophage infection increased the frequency of PSA in the "OFF" orientation, causing reduced PSA expression and decreased Treg cells. Altogether, we reveal dynamic bacterial phase variations driven by bacteriophages and host inflammation, signifying bacterial functional plasticity during disease.
Collapse
Affiliation(s)
- Shaqed Carasso
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel
| | - Rawan Zaatry
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel
| | - Haitham Hajjo
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel
| | - Dana Kadosh-Kariti
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel
| | - Nadav Ben-Assa
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel
| | - Rawi Naddaf
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel
| | - Noa Mandelbaum
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel
| | - Sigal Pressman
- Department of Gastroenterology, Rambam Health Care Campus, Haifa 3109601, Israel; Clinical Research Institute, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Yehuda Chowers
- Department of Gastroenterology, Rambam Health Care Campus, Haifa 3109601, Israel; Clinical Research Institute, Rambam Health Care Campus, Haifa 3109601, Israel; Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Tal Gefen
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel
| | - Kate L Jeffrey
- Moderna, Inc., Cambridge, MA 02139, USA; Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Juan Jofre
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Avda. Diagonal 643 08028, Barcelona, Spain
| | - Michael J Coyne
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Laurie E Comstock
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Itai Sharon
- Migal-Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel; Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel; CIFAR, MaRS Centre, West Tower 661, Suite 505, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
7
|
Wang X, Ding Z, Yang Y, Liang L, Sun Y, Hou C, Zheng Y, Xia Y, Dong L. ViromeFlowX: a Comprehensive Nextflow-based Automated Workflow for Mining Viral Genomes from Metagenomic Sequencing Data. Microb Genom 2024; 10:001202. [PMID: 38381034 PMCID: PMC10926697 DOI: 10.1099/mgen.0.001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
Understanding the link between the human gut virome and diseases has garnered significant interest in the research community. Extracting virus-related information from metagenomic sequencing data is crucial for unravelling virus composition, host interactions, and disease associations. However, current metagenomic analysis workflows for viral genomes vary in effectiveness, posing challenges for researchers seeking the most up-to-date tools. To address this, we present ViromeFlowX, a user-friendly Nextflow workflow that automates viral genome assembly, identification, classification, and annotation. This streamlined workflow integrates cutting-edge tools for processing raw sequencing data for taxonomic annotation and functional analysis. Application to a dataset of 200 metagenomic samples yielded high-quality viral genomes. ViromeFlowX enables efficient mining of viral genomic data, offering a valuable resource to investigate the gut virome's role in virus-host interactions and virus-related diseases.
Collapse
Affiliation(s)
- Xiaokai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, PR China
| | | | - Ying Yang
- 01Life Institute, Shenzhen, PR China
| | | | | | - Chaojian Hou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, PR China
| | | | - Yan Xia
- 01Life Institute, Shenzhen, PR China
| | - Lixin Dong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, PR China
| |
Collapse
|
8
|
Wang H, Xu S, Li S, Su B, Sherrill-Mix S, Liang G. Virome in immunodeficiency: what we know currently. Chin Med J (Engl) 2023; 136:2647-2657. [PMID: 37914672 PMCID: PMC10684123 DOI: 10.1097/cm9.0000000000002899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/03/2023] Open
Abstract
ABSTRACT Over the past few years, the human virome and its complex interactions with microbial communities and the immune system have gained recognition as a crucial factor in human health. Individuals with compromised immune function encounter distinctive challenges due to their heightened vulnerability to a diverse range of infectious diseases. This review aims to comprehensively explore and analyze the growing evidence regarding the role of the virome in immunocompromised disease status. By surveying the latest literature, we present a detailed overview of virome alterations observed in various immunodeficiency conditions. We then delve into the influence and mechanisms of these virome changes on the pathogenesis of specific diseases in immunocompromised individuals. Furthermore, this review explores the clinical relevance of virome studies in the context of immunodeficiency, highlighting the potential diagnostic and therapeutic gains from a better understanding of virome contributions to disease manifestations.
Collapse
Affiliation(s)
- Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Siqi Xu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Scott Sherrill-Mix
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
9
|
Chen B, Wang Y, Wang Q, Li D, Huang X, Kuang X, Wang S, Hu Z. Untargeted metabolomics identifies potential serum biomarkers associated with Crohn's disease. Clin Exp Med 2023; 23:1751-1761. [PMID: 36329220 DOI: 10.1007/s10238-022-00931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Crohn's disease (CD) is well characterized by chronic inflammation of the gastrointestinal tract. The diagnose of CD relays on the comprehensive evaluation of patient symptoms, laboratory examination, radiology, and endoscopy. There is lack of biomarkers or simple test for CD detection. Serum samples from healthy subjects (n = 16) and CD patients (n = 16) were collected and prepared for untargeted metabolomics analysis using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) method. The alterations of serum metabolites and the potential biomarkers were profiled by statistical analysis. And the associated metabolic pathway was analyzed based on Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The performance of potential biomarkers was assessed by receiver operating characteristic (ROC) analysis. A complete separation between HS and CD groups was seen in OPLS-DA. A total of 108 and 131 significantly altered metabolites in positive and negative ion mode, respectively, were identified, and most of them belong to several pathways ranging from lipid metabolism to amino acid metabolism and energy homeostasis. KEGG analysis revealed that lipid metabolism enriched most significantly. Further, ceramide, phosphatidylethanolamine (PE), and taurochenodeoxycholic acid (TCDCA) presented the highest predictive accuracy of the patients with CD as analyzed by ROC. The current study demonstrated that lipid metabolism is mostly related to CD pathogenesis. Further investigations are indicated to examine the use of lipid-related metabolites of ceramide, PE, and TCDCA as potential biomarkers for CD diagnosis.
Collapse
Affiliation(s)
- Bo Chen
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Yongjun Wang
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Qing Wang
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Dingqi Li
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Xiaotan Huang
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Xiaojin Kuang
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Shuzhong Wang
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Zhaotun Hu
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China.
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China.
| |
Collapse
|
10
|
Yuan S, Wang KS, Meng H, Hou XT, Xue JC, Liu BH, Cheng WW, Li J, Zhang HM, Nan JX, Zhang QG. The gut microbes in inflammatory bowel disease: Future novel target option for pharmacotherapy. Biomed Pharmacother 2023; 165:114893. [PMID: 37352702 DOI: 10.1016/j.biopha.2023.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 06/25/2023] Open
Abstract
Gut microbes constitute the main microbiota in the human body, which can regulate biological processes such as immunity, cell proliferation, and differentiation, hence playing a specific function in intestinal diseases. In recent years, gut microbes have become a research hotspot in the pharmaceutical field. Because of their enormous number, diversity, and functional complexity, gut microbes have essential functions in the development of many digestive diseases. Inflammatory bowel disease (IBD) is a chronic non-specific inflammatory disease with a complex etiology, the exact cause and pathogenesis are unclear. There are no medicines that can cure IBD, and more research on therapeutic drugs is urgently needed. It has been reported that gut microbes play a critical role in pathogenesis, and there is a tight and complex association between gut microbes and IBD. The dysregulation of gut microbes may be a predisposing factor for IBD, and at the same time, IBD may exacerbate gut microbes' disorders, but the mechanism of interaction between the two is still not well defined. The study of the relationship between gut microbes and IBD is not only important to elucidate the pathogenesis but also has a positive effect on the treatment based on the regimen of regulating gut microbes. This review describes the latest research progress on the functions of gut microbes and their relationship with IBD, which can provide reference and assistance for further research. It may provide a theoretical basis for the application of probiotics, fecal microbiota transplantation, and other therapeutic methods to regulate gut microbes in IBD.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ke-Si Wang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Huan Meng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Xiao-Ting Hou
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jia-Chen Xue
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China; Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, China
| | - Bao-Hong Liu
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Wen-Wen Cheng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jiao Li
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Hua-Min Zhang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China.
| |
Collapse
|
11
|
Valtetsiotis K, Di Martino A, Brunello M, Tassinari L, D'Agostino C, Traina F, Faldini C. The Potential Role of Gut Bacteriome Dysbiosis as a Leading Cause of Periprosthetic Infection: A Comprehensive Literature Review. Microorganisms 2023; 11:1778. [PMID: 37512950 PMCID: PMC10385477 DOI: 10.3390/microorganisms11071778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Periprosthetic joint infections (PJIs) represent a small yet important risk when undertaking a joint arthroplasty; they occur in approximately 1-2% of treatments. These infections create a medical and financial burden for patients and healthcare systems. Despite the introduction of recognized best clinical practices during arthroplasty operations, it is not yet possible to further reduce the risk of infection after surgery. The purpose of this review is to raise awareness of the potential role of gut dysbiosis in the development of PJIs and to highlight the potential of the gut bacteriome as a possible target for preventing them. (2) Methods: We compiled all the available data from five databases, examining the effects of gut dysbiosis in human and murine studies, following PRISMA guidelines, for a total of five reviewed studies. (3) Results: One human and one murine study found the Trojan horse theory applicable. Additionally, inflammatory bowel diseases, gut permeability, and oral antibiotic ingestion all appeared to play a role in promoting gut dysbiosis to cause PJIs, according to the other three studies. (4) Conclusions: Gut dysbiosis is linked to an increased risk of PJI.
Collapse
Affiliation(s)
- Konstantinos Valtetsiotis
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, 40127 Bologna, Italy
- 1st Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Di Martino
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, 40127 Bologna, Italy
- 1st Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Matteo Brunello
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, 40127 Bologna, Italy
- 1st Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Leonardo Tassinari
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, 40127 Bologna, Italy
- 1st Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Claudio D'Agostino
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, 40127 Bologna, Italy
- 1st Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Francesco Traina
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, 40127 Bologna, Italy
- Orthopedics-Traumatology and Prosthetic Surgery and Hip and Knee Revision, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Cesare Faldini
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, 40127 Bologna, Italy
- 1st Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
12
|
Štofilová J, Kvaková M, Kamlárová A, Hijová E, Bertková I, Guľašová Z. Probiotic-Based Intervention in the Treatment of Ulcerative Colitis: Conventional and New Approaches. Biomedicines 2022; 10:2236. [PMID: 36140337 PMCID: PMC9496552 DOI: 10.3390/biomedicines10092236] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Although there are number of available therapies for ulcerative colitis (UC), many patients are unresponsive to these treatments or experience secondary failure during treatment. Thus, the development of new therapies or alternative strategies with minimal side effects is inevitable. Strategies targeting dysbiosis of gut microbiota have been tested in the management of UC due to the unquestionable role of gut microbiota in the etiology of UC. Advanced molecular analyses of gut microbiomes revealed evident dysbiosis in UC patients, characterized by a reduced biodiversity of commensal microbiota. Administration of conventional probiotic strains is a commonly applied approach in the management of the disease to modify the gut microbiome, improve intestinal barrier integrity and function, and maintain a balanced immune response. However, conventional probiotics do not always provide the expected health benefits to a patient. Their benefits vary significantly, depending on the type and stage of the disease and the strain and dose of the probiotics administered. Their mechanism of action is also strain-dependent. Recently, new candidates for potential next-generation probiotics have been discovered. This could bring to light new approaches in the restoration of microbiome homeostasis and in UC treatment in a targeted manner. The aim of this paper is to provide an updated review on the current options of probiotic-based therapies, highlight the effective conventional probiotic strains, and outline the future possibilities of next-generation probiotic and postbiotic supplementation and fecal microbiota transplantation in the management of UC.
Collapse
Affiliation(s)
- Jana Štofilová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Trieda SNP 1, 040 11 Kosice, Slovakia
| | | | | | | | | | | |
Collapse
|
13
|
Dong Y, Xu T, Xiao G, Hu Z, Chen J. Opportunities and challenges for synthetic biology in the therapy of inflammatory bowel disease. Front Bioeng Biotechnol 2022; 10:909591. [PMID: 36032720 PMCID: PMC9399643 DOI: 10.3389/fbioe.2022.909591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a complex, chronic intestinal inflammatory disorder that primarily includes Crohn’s disease (CD) and ulcerative colitis (UC). Although traditional antibiotics and immunosuppressants are known as the most effective and commonly used treatments, some limitations may be expected, such as limited efficacy in a small number of patients and gut flora disruption. A great many research studies have been done with respect to the etiology of IBD, while the composition of the gut microbiota is suggested as one of the most influential factors. Along with the development of synthetic biology and the continuing clarification of IBD etiology, broader prospects for novel approaches to IBD therapy could be obtained. This study presents an overview of the currently existing treatment options and possible therapeutic targets at the preclinical stage with respect to microbial synthesis technology in biological therapy. This study is highly correlated to the following topics: microbiota-derived metabolites, microRNAs, cell therapy, calreticulin, live biotherapeutic products (LBP), fecal microbiota transplantation (FMT), bacteriophages, engineered bacteria, and their functional secreted synthetic products for IBD medical implementation. Considering microorganisms as the main therapeutic component, as a result, the related clinical trial stability, effectiveness, and safety analysis may be the major challenges for upcoming research. This article strives to provide pharmaceutical researchers and developers with the most up-to-date information for adjuvant medicinal therapies based on synthetic biology.
Collapse
Affiliation(s)
- Yumeng Dong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Suzhou U-Synbio Co., Ltd., Suzhou, China
| | - Tiangang Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guozheng Xiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ziyan Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingyu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Jingyu Chen,
| |
Collapse
|
14
|
Li Q, Zhou S, Wang Y, Cong J. Changes of intestinal microbiota and microbiota-based treatments in IBD. Arch Microbiol 2022; 204:442. [PMID: 35776212 DOI: 10.1007/s00203-022-03069-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) has gained increasing attention from researchers in terms of its pathophysiology as a global disease with a growing incidence. Although the exact etiology of IBD is still unknown currently, various studies have made us realize that it is related to the dysbiosis of intestinal microbiota and the link between the two may not just be a simple causal relationship, but also a dynamic and complicated one. The intestinal microbiota has been confirmed to be closely related to the occurrence, development, and treatment of IBD. Therefore, this review focuses on the changes in the structure, function, and metabolites of intestinal bacteria, fungi, and viruses in influencing IBD, as well as various approaches to IBD treatment by changing disordered intestinal microbiota. Ultimately, more clinical studies will be needed to focus on the efficacy of intestinal microbiota-based treatments in IBD, because of the existence of both advantages and disadvantages.
Collapse
Affiliation(s)
- Qianyu Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Siyu Zhou
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yanna Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|