1
|
Fontanot A, Ellinger I, Unger WWJ, Hays JP. A Comprehensive Review of Recent Research into the Effects of Antimicrobial Peptides on Biofilms-January 2020 to September 2023. Antibiotics (Basel) 2024; 13:343. [PMID: 38667019 PMCID: PMC11047476 DOI: 10.3390/antibiotics13040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Microbial biofilm formation creates a persistent and resistant environment in which microorganisms can survive, contributing to antibiotic resistance and chronic inflammatory diseases. Increasingly, biofilms are caused by multi-drug resistant microorganisms, which, coupled with a diminishing supply of effective antibiotics, is driving the search for new antibiotic therapies. In this respect, antimicrobial peptides (AMPs) are short, hydrophobic, and amphipathic peptides that show activity against multidrug-resistant bacteria and biofilm formation. They also possess broad-spectrum activity and diverse mechanisms of action. In this comprehensive review, 150 publications (from January 2020 to September 2023) were collected and categorized using the search terms 'polypeptide antibiotic agent', 'antimicrobial peptide', and 'biofilm'. During this period, a wide range of natural and synthetic AMPs were studied, of which LL-37, polymyxin B, GH12, and Nisin were the most frequently cited. Furthermore, although many microbes were studied, Staphylococcus aureus and Pseudomonas aeruginosa were the most popular. Publications also considered AMP combinations and the potential role of AMP delivery systems in increasing the efficacy of AMPs, including nanoparticle delivery. Relatively few publications focused on AMP resistance. This comprehensive review informs and guides researchers about the latest developments in AMP research, presenting promising evidence of the role of AMPs as effective antimicrobial agents.
Collapse
Affiliation(s)
- Alessio Fontanot
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.F.); (W.W.J.U.)
- Department of Pediatrics, Laboratory of Pediatrics, Erasmus University Medical Center Rotterdam, Sophia Children’s Hospital, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Isabella Ellinger
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Wendy W. J. Unger
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.F.); (W.W.J.U.)
- Department of Pediatrics, Laboratory of Pediatrics, Erasmus University Medical Center Rotterdam, Sophia Children’s Hospital, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - John P. Hays
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.F.); (W.W.J.U.)
| |
Collapse
|
2
|
Debroy R, Ramaiah S. Consolidated knowledge-guided computational pipeline for therapeutic intervention against bacterial biofilms - a review. BIOFOULING 2023; 39:928-947. [PMID: 38108207 DOI: 10.1080/08927014.2023.2294763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Biofilm-associated bacterial infections attributed to multifactorial antimicrobial resistance have caused worldwide challenges in formulating successful treatment strategies. In search of accelerated yet cost-effective therapeutics, several researchers have opted for bioinformatics-based protocols to systemize targeted therapies against biofilm-producing strains. The present review investigated the up-to-date computational databases and servers dedicated to anti-biofilm research to design/screen novel biofilm inhibitors (antimicrobial peptides/phytocompounds/synthetic compounds) and predict their biofilm-inhibition efficacy. Scrutinizing the contemporary in silico methods, a consolidated approach has been highlighted, referred to as a knowledge-guided computational pipeline for biofilm-targeted therapy. The proposed pipeline has amalgamated prominently employed methodologies in genomics, transcriptomics, interactomics and proteomics to identify potential target proteins and their complementary anti-biofilm compounds for effective functional inhibition of biofilm-linked pathways. This review can pave the way for new portals to formulate successful therapeutic interventions against biofilm-producing pathogens.
Collapse
Affiliation(s)
- Reetika Debroy
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Bio-Medical Sciences, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Bio-Sciences, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Orosz L, Lengyel G, Makai K, Burián K. Prescription of Rifampicin for Staphylococcus aureus Infections Increased the Incidence of Corynebacterium striatum with Decreased Susceptibility to Rifampicin in a Hungarian Clinical Center. Pathogens 2023; 12:pathogens12030481. [PMID: 36986404 PMCID: PMC10058903 DOI: 10.3390/pathogens12030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Several reports have suggested a role for Corynebacterium striatum as an opportunistic pathogen. The authors have conducted a retrospective study at the Clinical Center of the University of Szeged, Hungary, between 2012 and 2021 that revealed significantly increased rifampicin resistance in this species. This work aimed to investigate the reasons behind this phenomenon. The data were collected corresponding to the period between 1 January 2012 and 31 December 2021 at the Department of Medical Microbiology, University of Szeged. To characterize the resistance trends, the antibiotic resistance index was calculated for each antibiotic in use. Fourteen strains with different resistance patterns were further analyzed with Fourier-transform infrared spectroscopy using the IR Biotyper®. The decline in C. striatum sensitivity to rifampicin seen during the COVID-19 pandemic may have been attributable to the use of Rifadin® to treat concomitant Staphylococcus aureus infections. The fact that the IR Biotyper® typing method revealed that the rifampicin-resistant C. striatum strains were closely related supports this hypothesis. The IR Biotyper® infrared spectroscopy proved to be a modern and fast method to support effective antimicrobial stewardship programs.
Collapse
Affiliation(s)
- László Orosz
- Department of Medical Microbiology, University of Szeged, H-6725 Szeged, Hungary
| | - György Lengyel
- Infection Control Department, Semmelweis University, H-1085 Budapest, Hungary
| | - Klára Makai
- Central Pharmacy of Albert Szent-Györgyi Health Center, University of Szeged, H-6725 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
4
|
Lin D, Sutherland D, Aninta SI, Louie N, Nip KM, Li C, Yanai A, Coombe L, Warren RL, Helbing CC, Hoang LMN, Birol I. Mining Amphibian and Insect Transcriptomes for Antimicrobial Peptide Sequences with rAMPage. Antibiotics (Basel) 2022; 11:antibiotics11070952. [PMID: 35884206 PMCID: PMC9312091 DOI: 10.3390/antibiotics11070952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotic resistance is a global health crisis increasing in prevalence every day. To combat this crisis, alternative antimicrobial therapeutics are urgently needed. Antimicrobial peptides (AMPs), a family of short defense proteins, are produced naturally by all organisms and hold great potential as effective alternatives to small molecule antibiotics. Here, we present rAMPage, a scalable bioinformatics discovery platform for identifying AMP sequences from RNA sequencing (RNA-seq) datasets. In our study, we demonstrate the utility and scalability of rAMPage, running it on 84 publicly available RNA-seq datasets from 75 amphibian and insect species—species known to have rich AMP repertoires. Across these datasets, we identified 1137 putative AMPs, 1024 of which were deemed novel by a homology search in cataloged AMPs in public databases. We selected 21 peptide sequences from this set for antimicrobial susceptibility testing against Escherichia coli and Staphylococcus aureus and observed that seven of them have high antimicrobial activity. Our study illustrates how in silico methods such as rAMPage can enable the fast and efficient discovery of novel antimicrobial peptides as an effective first step in the strenuous process of antimicrobial drug development.
Collapse
Affiliation(s)
- Diana Lin
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Darcy Sutherland
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sambina Islam Aninta
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Nathan Louie
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Ka Ming Nip
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chenkai Li
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anat Yanai
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Lauren Coombe
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - René L. Warren
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Linda M. N. Hoang
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Inanc Birol
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Correspondence:
| |
Collapse
|
5
|
Corynebacterium striatum-Got Worse by a Pandemic? Pathogens 2022; 11:pathogens11060685. [PMID: 35745539 PMCID: PMC9230073 DOI: 10.3390/pathogens11060685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/05/2023] Open
Abstract
The role of Corynebacterium striatum has been demonstrated in different nosocomial infections. An increasing number of publications have demonstrated its virulence in the respiratory tract, especially in the immunosuppressed patient population. The number of these patients has increased significantly during the COVID-19 pandemic. For this reason, we aimed to investigate the prevalence and antimicrobial resistance pattern of this species between 2012 and 2021 at the Clinical Center of the University of Szeged, Hungary. Altogether, 498 positive samples were included from 312 patients during the study period. On the isolates, 4529 antibiotic susceptibility tests were performed. Our data revealed that the prevalence of C. striatum increased during the COVID-19 pandemic, the rise occurred in respiratory, blood culture, and superficial samples. During the study period, the rifampicin resistance significantly increased, but others have also changed dynamically, including linezolid. The species occurred with diverse and changing co-pathogens in the COVID-19 era. However, the increasing rifampicin and linezolid resistance of C. striatum was probably not due to the most commonly isolated co-pathogens. Based on resistance predictions, vancomycin is likely to remain the only effective agent currently in use by 2030.
Collapse
|