1
|
Ye C, Liu X, Liu Z, Pan C, Zhang X, Zhao Z, Sun H. Fusobacterium nucleatum in tumors: from tumorigenesis to tumor metastasis and tumor resistance. Cancer Biol Ther 2024; 25:2306676. [PMID: 38289287 PMCID: PMC10829845 DOI: 10.1080/15384047.2024.2306676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024] Open
Abstract
Fusobacterium nucleatum, an anaerobic Gram-negative bacterium primarily residing in the oral cavity, has garnered significant attention for its emerging role in cancer progression and prognosis. While extensive research has revealed mechanistic links between Fusobacterium nucleatum and colorectal cancer, a comprehensive review spanning its presence and metastatic implications in cancers beyond colorectal origin is conspicuously absent. This paper broadens our perspective from colorectal cancer to various malignancies associated with Fusobacterium nucleatum, including oral, pancreatic, esophageal, breast, and gastric cancers. Our central focus is to unravel the mechanisms governing Fusobacterium nucleatum colonization, initiation, and promotion of metastasis across diverse cancer types. Additionally, we explore Fusobacterium nucleatum's adverse impacts on cancer therapies, particularly within the domains of immunotherapy and chemotherapy. Furthermore, this paper underscores the clinical research significance of Fusobacterium nucleatum as a potential tumor biomarker and therapeutic target, offering a novel outlook on its applicability in cancer detection and prognostic assessment.
Collapse
Affiliation(s)
- Chun Ye
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiao Liu
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zilun Liu
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chuxuan Pan
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaowei Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhanyi Zhao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, Central People’s Hospital of Ji’an, Shanghai East Hospital of Ji’an, Ji’an, China
| |
Collapse
|
2
|
Shetty VV, Shetty SS. Exploring the gut microbiome and head and neck cancer interplay. Pathol Res Pract 2024; 263:155603. [PMID: 39368364 DOI: 10.1016/j.prp.2024.155603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
The gut microbiome, a complex community of microorganisms residing in the gastrointestinal tract, plays a crucial role in maintaining human health and influencing disease outcomes. Recent advancements in sequencing technologies have revealed the intricate relationship between gut microbiota and various health conditions. This review explores the impact of gut microbiome dysbiosis on immune function, chronic inflammation, and cancer progression. Dysbiosis, characterized by an imbalance in microbial populations, can lead to immune dysfunction, creating a pro-inflammatory environment conducive to tumorigenesis. Gut microbiome metabolites, such as short-chain fatty acids and bile acids, also play a significant role in modulating these processes. The interplay between these factors contributes to the development and progression of HNC. Furthermore, this review highlights the potential of therapeutic interventions targeting the gut microbiome, including probiotics, prebiotics, and dietary modifications, to restore microbial balance and mitigate cancer risk. Understanding the mechanisms by which the gut microbiome influences HNC can provide valuable insights into novel preventive and therapeutic strategies. Future research should focus on elucidating the specific microbial taxa and metabolites involved in HNC, as well as the impact of lifestyle factors such as diet, alcohol consumption, and oral hygiene on the gut microbiome. By leveraging the growing knowledge of the gut microbiome, it may be possible to develop personalized approaches to cancer prevention and treatment, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Veeksha V Shetty
- Nitte (Deemed To Be University), KS Hegde Medical Academy (KSHEMA), Central Research Laboratory, Cellomics, Lipidomics and Molecular Genetics Division, India
| | - Shilpa S Shetty
- Nitte (Deemed To Be University), KS Hegde Medical Academy (KSHEMA), Central Research Laboratory, Cellomics, Lipidomics and Molecular Genetics Division, India.
| |
Collapse
|
3
|
Maity R, Dhali A, Biswas J. Is Helicobacter pylori infection protective against esophageal cancer? World J Gastroenterol 2024; 30:4168-4174. [PMID: 39493327 PMCID: PMC11525877 DOI: 10.3748/wjg.v30.i38.4168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024] Open
Abstract
Helicobacter pylori (H. pylori) infection affects a substantial proportion of the global population and causes various gastric disorders, including gastric cancer. Recent studies have found an inverse relationship between H. pylori infection and esophageal cancer (EC), suggesting a protective role against EC. This editorial focuses on the possible mechanisms underlying the role of H. pylori infection in EC and explores the role of gut microbiota in esophageal carcinogenesis and the practicality of H. pylori eradication. EC has two major subtypes: Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), which have different etiologies and risk factors. Gut microbiota can contribute to EC via inflammation-induced carcinogenesis, immunomodulation, lactagenesis, and genotoxin production. H. pylori infection is said to be inversely related to EAC, protecting against EAC by inducing atrophic gastritis, altering serum ghrelin levels, and triggering cancer cell apoptosis. Though H. pylori infection has no significant association with ESCC, COX-2-1195 polymorphisms and endogenous nitrosamine production can impact the risk of ESCC in H. pylori-infected individuals. There are concerns regarding a plausible increase in EC after H. pylori eradication treatments. However, H. pylori eradication is not associated with an increased risk of EC, making it safe from an EC perspective.
Collapse
Affiliation(s)
- Rick Maity
- General Medicine, Institute of Post Graduate Medical Education and Research, Kolkata 700020, India
| | - Arkadeep Dhali
- Department of Gastroenterology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, United Kingdom
- School of Medicine and Population Health, University of Sheffield, Sheffield S10 2HQ, United Kingdom
- Deanery of Clinical Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Jyotirmoy Biswas
- Department of General Medicine, College of Medicine and Sagore Dutta Hospital, Kolkata 700058, India
| |
Collapse
|
4
|
Zhang X, Li Q, Xia S, He Y, Liu Y, Yang J, Xiao X. Proton Pump Inhibitors and Oral-Gut Microbiota: From Mechanism to Clinical Significance. Biomedicines 2024; 12:2271. [PMID: 39457584 PMCID: PMC11504961 DOI: 10.3390/biomedicines12102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Proton pump inhibitors (PPIs) are some of the most commonly prescribed drugs worldwide, but there are increasing concerns about digestive complications linked to PPIs. Next-generation sequencing studies have suggested that PPIs can significantly affect the composition of the gut microbiota, which in turn may substantially contribute to the development of these complications. Recently, emerging evidence has suggested that the translocation of oral microbes into the gut may be the primary mechanism underlying the alterations in the gut microbiota induced by PPIs in the presence of gastric acid suppression and impaired oral-gut barrier function. Moreover, the significance of oral-gut microbial translocation in health and disease conditions has gained increasing recognition. Consequently, it is imperative to enhance our understanding of the functions of the oral-gut microbiota axis in digestive disorders associated with PPI therapies. This review aims to summarize current research findings and further elucidate the contribution of the oral-gut microbiota to the pathogenesis of PPI-related digestive diseases. We aim to provide a theoretical foundation for future therapeutic and preventive strategies targeting PPI-related digestive complications through modulation of the oral-gut microbiota.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Pathology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Qing Li
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.L.); (S.X.); (Y.L.); (J.Y.)
| | - Siyuan Xia
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.L.); (S.X.); (Y.L.); (J.Y.)
| | - Yan He
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.L.); (S.X.); (Y.L.); (J.Y.)
| | - Yuqiang Liu
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.L.); (S.X.); (Y.L.); (J.Y.)
| | - Jinlin Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.L.); (S.X.); (Y.L.); (J.Y.)
| | - Xue Xiao
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.L.); (S.X.); (Y.L.); (J.Y.)
| |
Collapse
|
5
|
Hara Y, Baba Y, Oda E, Harada K, Yamashita K, Toihata T, Kosumi K, Iwatsuki M, Miyamoto Y, Tsutsuki H, Gan Q, Waters RE, Komohara Y, Sawa T, Ajani JA, Baba H. Presence of Fusobacterium nucleatum in relation to patient survival and an acidic environment in oesophagogastric junction and gastric cancers. Br J Cancer 2024; 131:797-807. [PMID: 38992099 PMCID: PMC11368944 DOI: 10.1038/s41416-024-02753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Fusobacterium nucleatum inhabits the oral cavity and affects the progression of gastrointestinal cancer. Our prior findings link F. nucleatum to poor prognosis in oesophageal squamous cell carcinoma via NF-κB pathway. However, its role in oesophagogastric junction and gastric adenocarcinoma remains unexplored. We investigated whether F. nucleatum influences these cancers, highlighting its potential impact. METHODS Two cohorts of EGJ and gastric adenocarcinoma patients (438 from Japan, 380 from the USA) were studied. F. nucleatum presence was confirmed by qPCR, FISH, and staining. Patient overall survival (OS) was assessed based on F. nucleatum positivity. EGJ and gastric adenocarcinoma cell lines were exposed to F. nucleatum to study molecular and phenotypic effects, validated in xenograft mouse model. RESULTS In both cohorts, F. nucleatum-positive EGJ or gastric adenocarcinoma patients had notably shorter OS. F. nucleatum positivity decreased in more acidic tumour environments. Cancer cell lines with F. nucleatum showed enhanced proliferation and NF-κB activation. The xenograft model indicated increased tumour growth and NF-κB activation in F. nucleatum-treated cells. Interestingly, co-occurrence of F. nucleatum and Helicobacter pylori, a known risk factor, was rare. CONCLUSIONS F. nucleatum can induce the NF-κB pathway in EGJ and gastric adenocarcinomas, leading to tumour progression and poor prognosis.
Collapse
Affiliation(s)
- Yoshihiro Hara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
- Division of Translational Research and Advanced Treatment Against Gastrointestinal Cancer, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan.
| | - Eri Oda
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kazuto Harada
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kohei Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tasuku Toihata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Keisuke Kosumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Qiong Gan
- Department of Pathology, UT M. D. Anderson Cancer Center, Houston, USA
| | - Rebecca E Waters
- Department of Pathology, UT M. D. Anderson Cancer Center, Houston, USA
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
6
|
Li C, Shu P, Shi T, Chen Y, Mei P, Zhang Y, Wang Y, Du X, Wang J, Zhang Y, Liu B, Sheng Z, Chan S, Dan Z. Predicting the potential deterioration of Barrett's esophagus based on gut microbiota: a Mendelian randomization analysis. Mamm Genome 2024; 35:399-413. [PMID: 38886201 DOI: 10.1007/s00335-024-10042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Esophageal adenocarcinoma (EAC) is one of the most malignant tumors in the digestive system. To make thing worse, the scarcity of treatment options is disheartening. However, if detected early, there is a possibility of reversing the condition. Unfortunately, there is still a lack of relevant early screening methods. Considering that Barrett's esophagus (BE), a precursor lesion of EAC, has been confirmed as the only known precursor of EAC. Analyzing which BE cases will progress to EAC and understanding the processes and mechanisms involved is of great significance for early screening of such patients. Considering the significant alterations in the gut microbiota of patients with BE and its potential role in the progression to EAC, this study aims to analyze the relationship between BE, EAC, and GM to identify potential diagnostic biomarkers and therapeutic targets. This study utilized comprehensive statistical data on gut microbiota from a large-scale genome-wide association meta-analysis conducted by the MiBioGen consortium (n = 18,340). Subsequently, we selected a set of single nucleotide polymorphisms (SNPs) that fell below the genome-wide significance threshold (1 × 10-5) as instrumental variables. To investigate the causal relationship between gut microbiota and BE and EAC, we employed various MR analysis methods, including Inverse Variance Weighting (IVW), MR-Egger regression, weighted median (WM), and weighted mean. Additionally, we assessed the level of pleiotropy, heterogeneity, and stability of genetic variations through MR-Egger intercept test, MR-PRESSO, Cochran's Q test, and "leave-one-out" sensitivity analysis. Furthermore, we conducted reverse MR analysis to identify the causal relationships between gut microbiota and BE and EAC. The results from the Inverse Variance-Weighted (IVW) analysis indicate that Alistipes (P = 4.86 × 10-2), Lactobacillus (P = 2.11 × 10-2), Prevotella 7 (P = 4.28 × 10-2), and RuminococcaceaeUCG004 (P = 4.34 × 10-2) are risk factors for Barrett's esophagus (BE), while Flavonifractor (P = 8.81 × 10-3) and RuminococcaceaeUCG004 (P = 4.99 × 10-2) are risk factors for esophageal adenocarcinoma (EAC). On the other hand, certain gut microbiota genera appear to have a protective effect against both BE and EAC. These include Eubacterium (nodatum group) (P = 4.51 × 10-2), Holdemania (P = 1.22 × 10-2), and Lactococcus (P = 3.39 × 10-2) in the BE cohort, as well as Eubacterium (hallii group) (P = 4.07 × 10-2) and Actinomyces (P = 3.62 × 10-3) in the EAC cohort. According to the results of reverse MR analysis, no significant causal effects of BE and EAC on gut microbiota were observed. Furthermore, no significant heterogeneity or pleiotropy was detected in the instrumental variables. We have established a causal relationship between the gut microbiota and BE and EAC. This study holds profound significance for screening BE patients who may be at risk of deterioration, as it can provide them with timely medical interventions to reverse the condition.
Collapse
Affiliation(s)
- Conghan Li
- First Clinical Medical College (First Affiliated Hospital), Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Panyin Shu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Taiyu Shi
- First Clinical Medical College (First Affiliated Hospital), Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yuerong Chen
- First Clinical Medical College (First Affiliated Hospital), Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ping Mei
- Department of Radiology, Anqing Municipal Hospital, Anqing, Anhui Province, 246000, China
| | - Yizhong Zhang
- College of Anesthesia, Wannan Medical College, No. 22 Wenchang West Road, Yijiang District, Wuhu City, 241002, Anhui, China
| | - Yan Wang
- College of Life Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xinyan Du
- First Clinical Medical College (First Affiliated Hospital), Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jianning Wang
- First Clinical Medical College (First Affiliated Hospital), Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yixin Zhang
- First Clinical Medical College (First Affiliated Hospital), Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Bin Liu
- First Clinical Medical College (First Affiliated Hospital), Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhijin Sheng
- Department of Physical Education, College of Humanistic Medicine, Anhui Medical University, Hefei, Anhui, China.
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230032, China.
| | - Zhangyong Dan
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
7
|
Deng J, Huang Y, Yu K, Luo H, Zhou D, Li D. Changes in the gut microbiome of patients with esophageal cancer: A systematic review and meta-analysis based on 16S gene sequencing technology. Microb Pathog 2024; 193:106784. [PMID: 38971508 DOI: 10.1016/j.micpath.2024.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Esophageal cancer (EC) possesses a high degree of malignancy and exhibits poor therapeutic outcomes and prognosis. However, its pathogenesis remains unclear. With the development of macrogene sequencing technology, changes in the intestinal flora have been found to be highly related to the development of EC, although discrepancies and controversies remain in this research area. MATERIALS AND METHODS We comprehensively searched the PubMed, EMBASE, and Cochrane's Central Controlled Trials Register and the Scientific Network's database search projects based on systematically reviewed preferred reporting projects and meta-analyses. We used Engauge Digitizer for data extraction and Stata 15.1 for data analysis. In addition, we used the Newcastle-Ottawa Scale for grade grading and forest and funnel plots, sensitivity, and Egger and Beggar tests to evaluate the risk of bias. RESULTS This study included 10 studies that assessed stool, tumor, and nontumor esophageal mucosa (gastroscopy and surgical resection) samples from 527 individuals, including 273 patients with EC and 254 healthy control group. We observed remarkable differences in microbial diversity in EC patients compared to healthy controls. The Chao1 index (46.01 vs. 42.67) was significantly increased in EC patients, whereas the Shannon index (14.90 vs. 19.05), ACE (39.24 vs. 58.47), and OTUs(28.93 vs. 70.10) were significantly lower. At the phylum level, the abundance of Bacteroidetes (37.89 vs. 32.77) increased significantly, whereas that of Firmicutes (37.63 vs. 38.72) decreased significantly; the abundance of Clostridium and Verruciformis increased, while that of Actinobacteria and Proteobacteria decreased to varying degrees. The abundance of Bacteroides (8.60 vs. 15.10) and Streptococcaceae (15.08 vs. 27.05) significantly reduced in EC. CONCLUSIONS According to our meta-analysis, in patients with EC, the Chao1 index increased, whereas the Shannon and the OTUs decreased. At the phylum level, the abundance of Firmicutes decreased significantly, whereas that of Bacteroidetes and Proteobacteria increased significantly. At the genus/family level, the abundance of Bacteroidaceae, Prevotellaceae and Streptococcaceae decreased significantly, whereas that of Veillonellaceae increased. This meta-analysis identified changes in gut microbiota in patients with EC; however, its conclusions were inconsistent.
Collapse
Affiliation(s)
- Jieyin Deng
- The Affiliated Hospital, Southwest Medical University, Luzhou 611630, China; Department of General Medicine, General Hospital of PLA Western Theater Command, Chengdu 610083, China
| | - Ye Huang
- Department of Nursing, Nursing School, Chengdu Medical College, Chengdu 610083, China
| | - Ke Yu
- Department of General Medicine, General Hospital of PLA Western Theater Command, Chengdu 610083, China
| | - Hong Luo
- Department of Oncology, General Hospital of PLA Western Theater Command, Chengdu 610083, China
| | - Daijun Zhou
- Department of Oncology, General Hospital of PLA Western Theater Command, Chengdu 610083, China.
| | - Dong Li
- The Affiliated Hospital, Southwest Medical University, Luzhou 611630, China; Department of Oncology, General Hospital of PLA Western Theater Command, Chengdu 610083, China.
| |
Collapse
|
8
|
Mehra P, Kumar A. Emerging importance of stool preservation methods in OMICS studies with special focus on cancer biology. Cell Biochem Funct 2024; 42:e4063. [PMID: 38961596 DOI: 10.1002/cbf.4063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 07/05/2024]
Abstract
The intricate consortium of microorganisms in the human gut plays a crucial role in different physiological functions. The complex known-unknown elements of the gut microbiome are perplexing and the absence of standardized procedures for collecting and preserving samples has hindered continuous research in comprehending it. The technological bias produced because of lack of standard protocols has affected the reproducibility of results. The complex nature of diseases like colorectal cancer, gastric cancer, hepatocellular carcinoma and breast cancer require a thorough understanding of its etiology for an efficient and timely diagnosis. The designated protocols for collection and preservation of stool specimens have great variance, hence generate inconsistencies in OMICS studies. Due to the complications associated to the nature of sample, it is important to preserve the sample to be studied later in a laboratory or to be used in the future research purpose. Stool preservation is gaining importance due to the increased use of treatment options like fecal microbiota transplantation to cure conditions like recurrent Clostridium difficile infections and for OMICS studies including metagenomics, metabolomics and culturomics. This review provides an insight into the importance of omics studies for the identification and development of novel biomarkers for quick and noninvasive diagnosis of various diseases.
Collapse
Affiliation(s)
- Parul Mehra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
9
|
Li X, Xu B, Yang H, Zhu Z. Gut Microbiota, Human Blood Metabolites, and Esophageal Cancer: A Mendelian Randomization Study. Genes (Basel) 2024; 15:729. [PMID: 38927665 PMCID: PMC11203100 DOI: 10.3390/genes15060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Unbalances in the gut microbiota have been proposed as a possible cause of esophageal cancer (ESCA), yet the exact causal relationship remains unclear. PURPOSE To investigate the potential causal relationship between the gut microbiota and ESCA with Mendelian randomization (MR) analysis. METHODS Genome-wide association studies (GWASs) of 207 gut microbial taxa (5 phyla, 10 classes, 13 orders, 26 families, 48 genera, and 105 species) and 205 gut microbiota metabolic pathways conducted by the Dutch Microbiome Project (DMP) and a FinnGen cohort GWAS of esophageal cancer specified the summary statistics. To investigate the possibility of a mediation effect between the gut microbiota and ESCA, mediation MR analyses were performed for 1091 blood metabolites and 309 metabolite ratios. RESULTS MR analysis indicated that the relative abundance of 10 gut microbial taxa was associated with ESCA but all the 12 gut microbiota metabolic pathways with ESCA indicated no statistically significant association existing. Two blood metabolites and a metabolite ratio were discovered to be mediating factors in the pathway from gut microbiota to ESCA. CONCLUSION This research indicated the potential mediating effects of blood metabolites and offered genetic evidence in favor of a causal correlation between gut microbiota and ESCA.
Collapse
Affiliation(s)
- Xiuzhi Li
- State Key Laboratory of Oncology in South China, Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
| | - Bingchen Xu
- State Key Laboratory of Oncology in South China, Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
| | - Han Yang
- State Key Laboratory of Oncology in South China, Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
| | - Zhihua Zhu
- State Key Laboratory of Oncology in South China, Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
10
|
Wang K, Wang J, Chen Y, Long H, Pan W, Liu Y, Xu MY, Guo Q. Causal relationship between gut microbiota and risk of esophageal cancer: evidence from Mendelian randomization study. Aging (Albany NY) 2024; 16:3596-3611. [PMID: 38364235 PMCID: PMC10929825 DOI: 10.18632/aging.205547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND The causative implications remain ambiguous. Consequently, this study aims to evaluate the putative causal relationship between gut microbiota and Esophageal cancer (EC). METHODS The genome-wide association study (GWAS) pertaining to the microbiome, derived from the MiBioGen consortium-which consolidates 18,340 samples across 24 population-based cohorts-was utilized as the exposure dataset. Employing the GWAS summary statistics specific to EC patients sourced from the GWAS Catalog and leveraging the two-sample Mendelian randomization (MR) methodology, the principal analytical method applied was the inverse variance weighted (IVW) technique. Cochran's Q statistic was utilized to discern heterogeneity inherent in the data set. Subsequently, a reverse MR analysis was executed. RESULTS Findings derived from the IVW technique elucidated that the Family Porphyromonadaceae (P = 0.048) and Genus Candidatus Soleaferrea (P = 0.048) function as deterrents against EC development. In contrast, the Genus Catenibacterium (P = 0.044), Genus Eubacterium coprostanoligenes group (P = 0.038), Genus Marvinbryantia (P = 0.049), Genus Ruminococcaceae UCG010 (P = 0.034), Genus Ruminococcus1 (P = 0.047), and Genus Sutterella (P = 0.012) emerged as prospective risk contributors for EC. To assess reverse causal effect, we used EC as the exposure and the gut microbiota as the outcome, and this analysis revealed associations between EC and seven different types of gut microbiota. The robustness of the MR findings was substantiated through comprehensive heterogeneity and pleiotropy evaluations. CONCLUSIONS This research identified certain microbial taxa as either protective or detrimental elements for EC, potentially offering valuable biomarkers for asymptomatic diagnosis and prospective therapeutic interventions for EC.
Collapse
Affiliation(s)
- Kui Wang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China
| | - Jiawei Wang
- Department of Critical Care Medicine, Jieyang Third People’s Hospital, Jieyang 515500, Guangdong Province, China
| | - Yuhua Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Huan Long
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China
| | - Wei Pan
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan 528000, Guangdong, China
| | - Yunfei Liu
- University Munich, Munich D-81377, Germany
| | - Ming-Yi Xu
- Department of Gastroenterology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai 310115, China
| | - Qiang Guo
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| |
Collapse
|
11
|
Zhang Z, Zhang G, Huang Z, Shi Y, Wang D. Application of Mendelian randomization to assess host gene-gut microbiota correlations in patients with esophageal cancer. Front Microbiol 2023; 14:1309596. [PMID: 38179450 PMCID: PMC10764629 DOI: 10.3389/fmicb.2023.1309596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Background Increasing evidence suggests that esophageal cancer (ESCA) may be correlated with gut flora. However, their causal connection remains unclear. This study aimed to evaluate potential causal linkages and gene-gut microbiome associations between the gut microbiota and ESCA using Mendelian randomization (MR). Methods We analyzed the data using genome-wide association studies. The exposure factor and outcome variable were the gut microbiota and ESCA, respectively. The MR-Egger method, weighted median, inverse-variance weighted method, heterogeneity test, sensitivity analysis, and multiplicity analysis were used for the MR analysis. And it was validated using an external dataset. Further meta-analysis was performed to validate the robustness of this relationship. Finally, we annotated single nucleotide polymorphisms in the gut microbiota that were causally associated with ESCA to explore possible host gene-gut microbiota correlations in patients with ESCA. Results We identified four species with potential associations with ESCA. Three of these species had a negative causal relationship with ESCA (odds ratio (OR): 0.961; 95% confidence interval (CI): 0.923-0.971; p = 0.047 for Romboutsia; OR: 0.972; 95% CI: 0.921-0.961; p = 0.018 for Lachnospira; OR: 0.948; 95% CI: 0.912-0.970; p = 0.032 for Eubacterium). A positive causal relationship was observed between one bacterial group and ESCA (OR: 1.105; 95% CI: 1.010-1.072; p = 0.018 for Veillonella). External datasets show the same trend. This is further supported by meta-analysis. None of the data showed pleiotropy, and leave-one-out analysis indicated the reliability of these findings. The gut microbiomes of patients with ESCA may correlate with the 19 identified genes. Conclusion Our data indicate a potential causal link between these four gut bacteria and ESCA and identify a correlation between host genes and gut microbiota in ESCA, offering novel therapeutic options.
Collapse
Affiliation(s)
- Zhenhu Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guodong Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhulan Huang
- Department of Ultrasound Medicine, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong, China
| | - Yamin Shi
- Department of Foreign Languages, Shandong University of Finance and Economics, Jinan, China
| | - Dong Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
12
|
Gao X, Wang Z, Liu B, Cheng Y. Causal association of gut microbiota and esophageal cancer: a Mendelian randomization study. Front Microbiol 2023; 14:1286598. [PMID: 38107856 PMCID: PMC10722290 DOI: 10.3389/fmicb.2023.1286598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Despite the growing body of evidence, the link between the gut microbiota and different types of tumors, such as colorectal, gastric, and liver cancer, is becoming more apparent. The gut microbiota can be used as a reference for evaluating various diseases, including cancer, and can also act as risk factors or preventive factors. However, the specific connection between the gut microbiota and the advancement of esophageal cancer has yet to be investigated. Therefore, the aim of this research is to clarify the possible causal influence of intestinal microorganisms on the vulnerability to esophageal cancer through the utilization of Mendelian randomization (MR) studies. Methods In this study, we employed a two-sample Mendelian randomization approach to evaluate the unbiased causal association between 150 different gut microbiota types and the occurrence of esophageal cancer. Following the selection from the IEU GWAS database and SNP filtration, we utilized various MR statistical techniques on the suitable instrumental variables. These included IVW methods, employing inverse variance weighting. Additionally, we performed a range of sensitivity analyses to confirm the heterogeneity and pleiotropy of the instrumental variables, thus ensuring the reliability of the outcomes. Results The increased likelihood of developing esophageal cancer is linked to the genetically predicted high levels of Gordonibacter, Oxalobacter, Coprobacter, Veillonella, Ruminiclostridium 5, Ruminococcus 1, and Senegalimasilia genera. Conversely, a decreased risk of esophageal cancer is associated with the high abundance of Turicibacter, Eubacterium oxidoreducens group, Romboutsia, and Prevotella 9 genera. No heterogeneity and pleiotropy were detected in the sensitivity analysis. Discussion We found that 11 types of gut microbial communities are associated with esophageal cancer, thereby confirming that the gut microbiota plays a significant role in the path.
Collapse
Affiliation(s)
- Xiangyu Gao
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhiguo Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bowen Liu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
13
|
Lee LH, Gao X, Sun G. Editorial: Roles of microbes in esophageal disease. Front Cell Infect Microbiol 2023; 13:1339579. [PMID: 38094747 PMCID: PMC10716524 DOI: 10.3389/fcimb.2023.1339579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Learn-Han Lee
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
- Research Center for Life Science and Healthcare, China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Zhejiang, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Gang Sun
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
14
|
Dadgar N, Edlukudige Keshava V, Raj MS, Wagner PL. The Influence of the Microbiome on Immunotherapy for Gastroesophageal Cancer. Cancers (Basel) 2023; 15:4426. [PMID: 37760397 PMCID: PMC10526145 DOI: 10.3390/cancers15184426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Immunotherapy has shown promise as a treatment option for gastroesophageal cancer, but its effectiveness is limited in many patients due to the immunosuppressive tumor microenvironment (TME) commonly found in gastrointestinal tumors. This paper explores the impact of the microbiome on the TME and immunotherapy outcomes in gastroesophageal cancer. The microbiome, comprising microorganisms within the gastrointestinal tract, as well as within malignant tissue, plays a crucial role in modulating immune responses and tumor development. Dysbiosis and reduced microbial diversity are associated with poor response rates and treatment resistance, while specific microbial profiles correlate with improved outcomes. Understanding the complex interactions between the microbiome, tumor biology, and immunotherapy is crucial for developing targeted interventions. Microbiome-based biomarkers may enable personalized treatment approaches and prediction of patient response. Interventions targeting the microbiome, such as microbiota-based therapeutics and dietary modifications, offer the potential for reshaping the gut microbiota and creating a favorable TME that enhances immunotherapy efficacy. Further research is needed to reveal the underlying mechanisms, and large-scale clinical trials will be required to validate the efficacy of microbiome-targeted interventions.
Collapse
Affiliation(s)
- Neda Dadgar
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | | | - Moses S. Raj
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15224, USA; (V.E.K.); (M.S.R.)
| | - Patrick L. Wagner
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15224, USA; (V.E.K.); (M.S.R.)
| |
Collapse
|
15
|
Vadhwana B, Tarazi M, Boshier PR, Hanna GB. Evaluation of the Oesophagogastric Cancer-Associated Microbiome: A Systematic Review and Quality Assessment. Cancers (Basel) 2023; 15:2668. [PMID: 37345006 PMCID: PMC10216300 DOI: 10.3390/cancers15102668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 06/23/2023] Open
Abstract
OBJECTIVE Oesophagogastric cancer is the fifth most common cancer worldwide, with poor survival outcomes. The role of bacteria in the pathogenesis of oesophagogastric cancer remains poorly understood. DESIGN A systematic search identified studies assessing the oesophagogastric cancer microbiome. The primary outcome was to identify bacterial enrichment specific to oesophagogastric cancer. Secondary outcomes included appraisal of the methodology, diagnostic performance of cancer bacteria and the relationship between oral and tissue microbiome. RESULTS A total of 9295 articles were identified, and 87 studies were selected for analysis. Five genera were enriched in gastric cancer: Lactobacillus, Streptococcus, Prevotella, Fusobacterium and Veillonella. No clear trends were observed in oesophageal adenocarcinoma. Streptococcus, Prevotella and Fusobacterium were abundant in oesophageal squamous cell carcinoma. Functional analysis supports the role of immune cells, localised inflammation and cancer-specific pathways mediating carcinogenesis. STORMS reporting assessment identified experimental deficiencies, considering batch effects and sources of contamination prevalent in low-biomass samples. CONCLUSIONS Functional analysis of cancer pathways can infer tumorigenesis within the cancer-microbe-immune axis. There is evidence that study design, experimental protocols and analytical techniques could be improved to achieve more accurate and representative results. Whole-genome sequencing is recommended to identify key metabolic and functional capabilities of candidate bacteria biomarkers.
Collapse
Affiliation(s)
- Bhamini Vadhwana
- Department of Surgery and Cancer, Imperial College London, 7th floor Commonwealth building, Hammersmith Hospital, London W12 0HS, UK
| | - Munir Tarazi
- Department of Surgery and Cancer, Imperial College London, 7th floor Commonwealth building, Hammersmith Hospital, London W12 0HS, UK
| | - Piers R Boshier
- Department of Surgery and Cancer, Imperial College London, 7th floor Commonwealth building, Hammersmith Hospital, London W12 0HS, UK
| | - George B Hanna
- Department of Surgery and Cancer, Imperial College London, 7th floor Commonwealth building, Hammersmith Hospital, London W12 0HS, UK
| |
Collapse
|