1
|
Miller WR, Arias CA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol 2024; 22:598-616. [PMID: 38831030 DOI: 10.1038/s41579-024-01054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
The rise of antibiotic resistance and a dwindling antimicrobial pipeline have been recognized as emerging threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria for which effective therapies were rapidly needed. Now, entering the third decade of the twenty-first century, and despite the introduction of several new antibiotics and antibiotic adjuvants, such as novel β-lactamase inhibitors, these organisms continue to represent major therapeutic challenges. These bacteria share several key biological features, including adaptations for survival in the modern health-care setting, diverse methods for acquiring resistance determinants and the dissemination of successful high-risk clones around the world. With the advent of next-generation sequencing, novel tools to track and combat the spread of these organisms have rapidly evolved, as well as renewed interest in non-traditional antibiotic approaches. In this Review, we explore the current epidemiology and clinical impact of this important group of bacterial pathogens and discuss relevant mechanisms of resistance to recently introduced antibiotics that affect their use in clinical settings. Furthermore, we discuss emerging therapeutic strategies needed for effective patient care in the era of widespread antimicrobial resistance.
Collapse
Affiliation(s)
- William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Cesar A Arias
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA.
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Li W, Liu Y, Xiao L, Cai X, Gao W, Xu D, Han S, He Y. Development and validation of a prognostic nomogram to predict 30-day all-cause mortality in patients with CRO infection treated with colistin sulfate. Front Pharmacol 2024; 15:1409998. [PMID: 39101134 PMCID: PMC11294994 DOI: 10.3389/fphar.2024.1409998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024] Open
Abstract
Background Carbapenem-resistant Gram-negative organism (CRO) infection is a critical clinical disease with high mortality rates. The 30-day mortality rate following antibiotic treatment serves as a benchmark for assessing the quality of care. Colistin sulfate is currently considered the last resort therapy against infections caused by CRO. Nevertheless, there is a scarcity of reliable tools for personalized prognosis of CRO infections. This study aimed to develop and validate a nomogram to predict the 30-day all-cause mortality in patients with CRO infection who underwent colistin sulfate treatment. Methods A prediction model was developed and preliminarily validated using CRO-infected patients treated with colistin sulfate at Tongji Hospital in Wuhan, China, who were hospitalized between May 2018 and May 2023, forming the study cohort. Patients admitted to Xianning Central Hospital in Xianning, China, between May 2018 and May 2023 were considered for external validation. Multivariate logistic regression was performed to identify independent predictors and establish a nomogram to predict the occurrence of 30-day all-cause mortality. The receiver operating characteristic (ROC) curve, the area under the ROC curve (AUC), and the calibration curve were used to evaluate model performance. The decision curve analysis (DCA) was used to assess the model clinical utility. Results A total of 170 patients in the study cohort and 65 patients in the external validation cohort were included. Factors such as age, duration of combination therapy, nasogastric tube placement, history of previous surgery, presence of polymicrobial infections, and occurrence of septic shock were independently associated with 30-day all-cause mortality and were used to construct the nomogram. The AUC of the nomogram constructed from the above six factors was 0.888 in the training set. The Hosmer-Lemeshow test showed that the model was a good fit (p = 0.944). The calibration curve of the nomogram was close to the ideal diagonal line. Furthermore, the decision curve analysis demonstrated significantly better net benefit in the model. The external validation proved the reliability of the prediction nomogram. Conclusion A nomogram was developed and validated to predict the occurrence of 30-day all-cause mortality in patients with CRO infection treated with colistin sulfate. This nomogram offers healthcare providers a precise and efficient means for early prediction, treatment management, and patient notification in cases of CRO infection treated with colistin sulfate.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Xiao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuezhou Cai
- Department of Pharmacy, Xianning Central Hospital, Hubei University of Science and Technology, Xianning, China
| | - Weixi Gao
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dong Xu
- Department of Infection Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shishi Han
- Yichang Health Technology Information Center, Yichang, China
| | - Yan He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Zhao D, Gao Y, Chen Y, Zhang Y, Deng Y, Niu S, Dai H. L-Citrulline Ameliorates Iron Metabolism and Mitochondrial Quality Control via Activating AMPK Pathway in Intestine and Improves Microbiota in Mice with Iron Overload. Mol Nutr Food Res 2024; 68:e2300723. [PMID: 38425278 DOI: 10.1002/mnfr.202300723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/26/2024] [Indexed: 03/02/2024]
Abstract
SCOPE Oxidative stress caused by iron overload tends to result in intestinal mucosal barrier dysfunction and intestinal microbiota imbalance. As a neutral and nonprotein amino acid, L-Citrulline (L-cit) has been implicated in antioxidant and mitochondrial amelioration properties. This study investigates whether L-cit can alleviate iron overload-induced intestinal injury and explores the underlying mechanisms. METHODS AND RESULTS C57BL/6J mice are intraperitoneally injected with iron dextran, then gavaged with different dose of L-cit for 2 weeks. L-cit treatment significantly alleviates intestine pathological injury, oxidative stress, ATP level, and mitochondrial respiratory chain complex activities, accompanied by ameliorating mitochondrial quality control. L-cit-mediated protection is associated with the upregulation of Glutathione Peroxidase 4 (GPX4) expression, inhibition Nuclear Receptor Coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, and improvement of gut microbiota. To investigate the underlying molecular mechanisms, Intestinal Porcine Epithelial Cell line-J2 (IPEC-J2) cells are treated with L-cit or AMP-activated Protein Kinase (AMPK) inhibitor. AMPK signaling has been activated by L-cit. Notably, Compound C abolishes L-cit's protection on intestinal barrier, mitochondrial function, and antioxidative capacity in IPEC-J2 cells. CONCLUSION L-cit may restrain ferritinophagy and ferroptosis to regulate iron metabolism, and induce AMPK pathway activation, which contributes to exert antioxidation, ameliorate iron metabolism and mitochondrial quality control, and improve intestinal microbiota. L-cit is a promising therapeutic strategy for iron overload-induced intestinal injury.
Collapse
Affiliation(s)
- Dai Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
| | - Yuan Gao
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
| | - Yiqin Chen
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
| | - Yingsi Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
| | - Yian Deng
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
| | - Sai Niu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
| |
Collapse
|
4
|
Kuzina ES, Kislichkina AA, Sizova AA, Skryabin YP, Novikova TS, Ershova ON, Savin IA, Khokhlova OE, Bogun AG, Fursova NK. High-Molecular-Weight Plasmids Carrying Carbapenemase Genes blaNDM-1, blaKPC-2, and blaOXA-48 Coexisting in Clinical Klebsiella pneumoniae Strains of ST39. Microorganisms 2023; 11:microorganisms11020459. [PMID: 36838424 PMCID: PMC9961262 DOI: 10.3390/microorganisms11020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae, a member of the ESKAPE group of bacterial pathogens, has developed multi-antimicrobial resistance (AMR), including resistance to carbapenems, which has increased alarmingly due to the acquisition of carbapenemase genes located on specific plasmids. METHODS Four clinical K. pneumoniae isolates were collected from four patients of a neuro-intensive care unit in Moscow, Russia, during the point prevalence survey. The AMR phenotype was estimated using the Vitec-2 instrument, and whole genome sequencing (WGS) was done using Illumina and Nanopore technologies. RESULTS All strains were resistant to beta-lactams, nitrofurans, fluoroquinolones, sulfonamides, aminoglycosides, and tetracyclines. WGS analysis revealed that all strains were closely related to K. pneumoniae ST39, capsular type K-23, with 99.99% chromosome identity. The novelty of the study is the description of the strains carrying simultaneously three large plasmids of the IncHI1B, IncC, and IncFIB groups carrying the carbapenemase genes of three types, blaOXA-48, blaNDM-1, and blaKPC-2, respectively. The first of them, highly identical in all strains, was a hybrid plasmid that combined two regions of the resistance genes (blaOXA-48 and blaTEM-1 + blaCTX-M-15 + blaOXA-1 + catB + qnrS1 + int1) and a region of the virulence genes (iucABCD, iutA, terC, and rmpA2::IS110). CONCLUSION The spread of K. pneumoniae strains carrying multiple plasmids conferring resistance even to last-resort antibiotics is of great clinical concern.
Collapse
Affiliation(s)
- Ekaterina S. Kuzina
- Department of Training and Improvement of Specialists, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Angelina A. Kislichkina
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Angelika A. Sizova
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Yury P. Skryabin
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Tatiana S. Novikova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Olga N. Ershova
- Department of Clinical Epidemiology, National Medical Research Center of Neurosurgery Named after Academician N.N. Burdenko, 125047 Moscow, Russia
| | - Ivan A. Savin
- Department of Clinical Epidemiology, National Medical Research Center of Neurosurgery Named after Academician N.N. Burdenko, 125047 Moscow, Russia
| | - Olga E. Khokhlova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Alexander G. Bogun
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Nadezhda K. Fursova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
- Correspondence:
| |
Collapse
|
5
|
Cai Y, Hoo GSR, Lee W, Tan BH, Yoong J, Teo YY, Graves N, Lye D, Kwa AL. Estimating the economic cost of carbapenem resistant Enterobacterales healthcare associated infections in Singapore acute-care hospitals. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0001311. [PMID: 36962882 PMCID: PMC10021918 DOI: 10.1371/journal.pgph.0001311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/30/2022] [Indexed: 12/12/2022]
Abstract
Quantifying the costs of hospital associated infections (HAIs) caused by carbapenem-resistant Enterobacterales (CRE) can aid hospital decision makers in infection prevention and control decisions. We estimate the costs of a CRE HAI by infection type and the annual costs of CRE HAIs to acute-care hospitals in Singapore. We used tree diagrams to estimate the costs (in Singapore dollar) of different CRE HAI types from the health service perspective and compared them to the costs of carbapenem-susceptible HAIs. We used two approaches to estimate costs-direct costs of consumables for infection prevention and treatment; and costs associated with lost bed days. Cost of a HAI were extrapolated to annual CRE HAI incidence in Singapore acute-care hospitals to estimate the annual cost to the hospitals. We found that the cost of a CRE HAI based on direct cost and lost bed days are SGD$9,913 (95% CI, SGD$9,431-10,395) and SGD$10,044 (95% CI, SGD$9,789-10,300) respectively. CRE HAIs are markedly higher than the carbapenem-susceptible HAIs for all infection types. In both approaches, CRE pneumonia was the costliest infection. Based on a CRE HAI incidence of 233 per 100,000 inpatient admissions, CRE HAIs costed SGD$12.16M (95% CI, SGD$11.84-12.48M) annually based on direct costs, and SGD$12.33M (95% CI, SGD$12.01-12.64M) annually based on lost bed days. In conclusion, we described the cost of CRE HAIs in Singapore hospitals and identified infections with the highest costs. The findings may be useful in informing future economic evaluations of competing CRE HAI prevention and treatment programmes.
Collapse
Affiliation(s)
- Yiying Cai
- Programme in Health Services & Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Grace S R Hoo
- Department of Pharmacy, Tan Tock Seng Hospital, Singapore, Singapore
| | - Winnie Lee
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Ban Hock Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Joanne Yoong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Research for Impact, Singapore, Singapore
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Nicholas Graves
- Programme in Health Services & Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - David Lye
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Infectious Diseases, National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Andrea L Kwa
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
- Singhealth Duke-NUS Medicine Academic Clinical Programme, Singapore, Singapore
- Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore
| |
Collapse
|