1
|
Wu S, Huang Y, Wu M, Chen H, Wang B, Amoah K, Cai J, Jian J. Identification of a cellular role of hemolysin co-regulatory protein (Hcp) in Vibrio alginolyticus modulating substrate metabolism and biofilm formation by cAMP-CRP. Int J Biol Macromol 2024; 282:136656. [PMID: 39423969 DOI: 10.1016/j.ijbiomac.2024.136656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/14/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Cyclic AMP (cAMP) and cAMP receptor protein (CRP) system controls catabolic enzyme expression based on metabolite concentrations in bacteria. Hemolysin co-regulatory protein (Hcp) is well known as a molecular chaperone for virulence factor secretion of the type VI secretion system (T6SS). However, the intracellular role of Hcp involving in bacterial physiological processes remains unknown. To clarify that, we constructed a single hcp mutant strain and analyzed their effects on the physiological processes of Vibrio alginolyticus. The omics results revealed the extensive involvement of Hcp in the catabolic metabolism in bacteria. Simultaneously, Hcp1 and Hcp2 played opposing regulatory roles on the bacterial growth, biofilm formation, and intracellular cAMP-CRP levels during cultivation in a glucose medium. Furthermore, the interacting protein screening and co-immunoprecipitation (Co-IP) assays confirmed that the glucose-specific phosphoenolpyruvate (PEP)-phosphotransferase system (PTS) enzyme IIA component (EIIAglc) was a key interacting partner with Hcp proteins as well as class I adenylyl cyclase (AC-I) in Vibrio alginolyticus. These results indicated that, to achieve cellular homeostasis, Hcp1 and Hcp2 might exert antagonistic and synergistic effects, respectively, on the interaction between EIIAglc and AC thus cooperatively regulating intracellular cAMP-CRP production.
Collapse
Affiliation(s)
- Shuilong Wu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Huang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Minhui Wu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, China
| | - Huapu Chen
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kwaku Amoah
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jia Cai
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Wang Y, Ling N, Wang Y, Ou D, Liang Z, Li G, Zhao H, Ye Y. Effect of ferric ions on Cronobacter sakazakii growth, biofilm formation, and swarming motility. Int J Food Microbiol 2024; 408:110418. [PMID: 37857020 DOI: 10.1016/j.ijfoodmicro.2023.110418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Cronobacter sakazakii (C. sakazakii) is a common food-borne pathogen that induces meningitis, sepsis, and necrotizing enterocolitis, primarily in newborns and infants. Iron plays a pivotal role in the growth of cells and biofilm formation. However, the effects of hemin (ferric ion donor) on C. sakazakii cells are scarcely known. Here, we explored the effect of ferric ions on the growth of planktonic C. sakazakii, biofilm formation, and swarming motility by crystal violet staining (CVS), scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and swarming assay. Our study demonstrated that ferric ions facilitated the growth of planktonic C. sakazakii, while hemin at concentrations ranging from 50 to 800 μmol/L promoted biofilm formation and at concentrations between 50 and 200 μmol/L enhanced the swarming motility of C. sakazakii. Furthermore, high hemin concentrations (400-800 μmol/L) were found to reduce flagellar length, as confirmed by transmission electron microscopy (TEM). These findings indicated that ferric ions mediated the swarming motility of C. sakazakii by regulating flagellar assembly. Finally, transcriptomic analysis of C. sakazakii was performed at hemin concentrations of 0, 50, and 200 μmol/L, which revealed that several genes associated with iron transport and metabolism, and flagellar assembly were essential for the survival of C. sakazakii under hemin treatment. Our findings revealed the molecular basis of ferric ions on C. sakazakii growth and biofilm formation, thus providing a novel perspective for its prevention and control.
Collapse
Affiliation(s)
- Yang Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Na Ling
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yaping Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Dexin Ou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Zhao Liang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Guoqing Li
- Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Hongyuan Zhao
- Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Yingwang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
3
|
Barati H, Fekrirad Z, Jalali Nadoushan M, Rasooli I. Anti-OmpA antibodies as potential inhibitors of Acinetobacter baumannii biofilm formation, adherence to, and proliferation in A549 human alveolar epithelial cells. Microb Pathog 2024; 186:106473. [PMID: 38048840 DOI: 10.1016/j.micpath.2023.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Outer membrane protein A (OmpA) is a critical virulence factor in Acinetobacter baumannii, influencing adhesion, biofilm formation, host immune response, and host cell apoptosis. We investigated the invasion of A549 alveolar epithelial cells by A. baumannii and examined how anti-OmpA antibodies impact these interactions. OmpA was expressed and purified, inducing anti-OmpA antibodies in BALB/c mice. The potential toxicity of OmpA was evaluated in mice by analyzing histology from six organs. A549 cells were exposed to A. baumannii strains 19606 and a clinical isolate. Using cell culture and light microscopy, we scrutinized the effects of anti-OmpA sera on serum resistance, adherence, internalization, and proliferation of A. baumannii in A549 cells. The viability of A549 cells was assessed upon exposure to live A. baumannii and anti-OmpA sera. OmpA-induced antibody demonstrated potent bactericidal effects on both strains of A. baumannii. Both strains formed biofilms, which were reduced by anti-OmpA serum, along with decreased bacterial adherence, internalization, and proliferation in A549 cells. Anti-OmpA serum improved the survival of A549 cells post-infection. Pre-treatment with cytochalasin D hindered bacterial internalization, highlighting the role of actin polymerization in invasion. Microscopic examination revealed varied interactions encompassing adherence, apoptosis, membrane alterations, vacuolization, and damage. A549 cells treated with anti-OmpA serum exhibited improved structures and reduced damage. The findings indicate that A. baumannii can adhere to and proliferate within epithelial cells with OmpA playing a pivotal role in these interactions, and the complex nature of these interactions shapes the intricate course of A. baumannii infection in host cells.
Collapse
Affiliation(s)
| | | | - Mohammadreza Jalali Nadoushan
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran; Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran.
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran; Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran.
| |
Collapse
|
4
|
Hu YY, Chen S, Zhang YD, Lu QW, Wang F, Ren A, Liu CX. Value of T6SS Core Gene hcp in Acinetobacter baumannii Respiratory Tract Infection. Indian J Microbiol 2023; 63:291-298. [PMID: 37781009 PMCID: PMC10533764 DOI: 10.1007/s12088-023-01083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/27/2023] [Indexed: 10/03/2023] Open
Abstract
Hospital-acquired pneumonia caused by Acinetobacter baumannii is a major healthcare burden. Type VI Secretion System (T6SS) contributes to both virulence and drug resistance in this bacteria. This study aims to investigate the diagnostic value of hemolysin co-regulated protein (Hcp) gene in A. baumannii pneumonia and further explore the effect of hcp on clinical, pathogenicity and drug resistance. 53 clinical A. baumannii strains from patients' respiratory tract at a teaching hospital were included in this study. Real-time quantitative polymerase chain reaction (qRT-PCR) was carried out to examine the expression of hcp. Recombinant Hcp expression plasmids (pET-28a(+)-hcp) were constructed and his-tagged Hcp were purified to stimulate Tohoku Hospital Pediatrics-1 (THP-1) macrophages. Nuclear Factor Kappa B p65 (NF-κBp65) and Interleukin 8 (IL-8) were detected by qRT-PCR. Antimicrobial susceptibility testing (AST) were examined by an automated instrument system. Hcp gene had 92.6% sensitivity and 75% specificity for distinguishing invasive or colonizing A. baumannii from the respiratory tract. His-tagged Hcp induced NF-κBp65 and IL-8 at gene level in THP-1 macrophages. Additional, high hcp expression isolates showed higher rate of antimicrobial agent exposure (< 30 days) of carbapenems, antibiotic combination therapy and multiple or extensive drug-resistant (MDR/XDR) and exhibited higher resistance rate to clinical commonly-used antimicrobial agents. Hcp gene could serve as a novel diagnostic biomarker to distinguish A. baumannii respiratory tract infection from colonization and participate in eliciting inflammatory responses in vitro. T6SS/hcp may play a role in the development of carbapenem-resistant A. baumannii (CRAB), multiple or extensive drug-resistant A. baumannii (MDRAB/XDRAB). Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01083-8.
Collapse
Affiliation(s)
- Yin-yin Hu
- Department of Clinical Laboratory, Nanyang Central Hospital, Nanyang, 473000 Henan Province China
| | - Shuo Chen
- Department of Infection Control, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Ya-dong Zhang
- Department of Breast Surgery, Nan yang Second General Hospital, Nanyang, 473000 Henan Province China
| | - Qing-wen Lu
- Department of Clinical Laboratory, Nanyang Central Hospital, Nanyang, 473000 Henan Province China
| | - Fei Wang
- Department of Clinical Laboratory, Nanyang Central Hospital, Nanyang, 473000 Henan Province China
| | - Aijuan Ren
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Cai-xia Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| |
Collapse
|
5
|
Wang X, Jiang J, Wei C, Yang W, Chen J, Dong X, Wan H, Yu D. UTILITY OF STREM-1 BIOMARKER AND HCP GENE FOR IDENTIFICATION OF ACINETOBACTER BAUMANNII COLONIZATION AND INFECTION IN LUNG. Shock 2023; 60:354-361. [PMID: 37553916 PMCID: PMC10510786 DOI: 10.1097/shk.0000000000002175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 08/10/2023]
Abstract
ABSTRACT Objective: Respiratory infections or colonization of Acinetobacter baumannii (Ab) are common in clinical practice but are treated differently. Early identification of Ab infection and colonization reduces the risk of antibiotic mismatch but objective laboratory indicators to distinguish between bacterial infections and colonization are lacking. To distinguish infection and colonization of Ab, we tested the role of two biomarkers, triggering receptor expressed on myeloid cells-1 (TREM-1) and hemolysin coregulated protein. Methods: A total of 96 inpatients with Ab were divided into infection and colonization groups. Blood samples were collected on days 1, 2, 3, 5, 8, and 10 and daily maximum body temperature was recorded. Polymerase Chain Reaction and Reverse Transcription Polymerase Chain Reaction were used to detect the presence and expression levels of the hcp gene in Ab clinical isolates. Results : sTREM-1 and procalcitonin (PCT) levels on days 1 to 10 and neutrophil classification (N%) on days 1 to 3 were different ( P < 0.05) in the infection group and colonization group. Receiver operating characteristic (ROC) curves showed significant differences in N% and sTREM-1 on days 2 and 3 ( P < 0.01). sTREM-1 had the highest AUC ROC on days 1, 2, and 3 of all the markers. On day 1, the ROC curve of "WBC&N%&PCT&sTREM-1" was statistically different from individual indices (white blood cell count, N%, and PCT; P < 0.05) and was equal to the ROC curve of sTREM-1 ( P > 0.05). Thirty five of 96 patients were classified as infection group and 61 as colonization group with hcp gene detection rates of 71.43% (25/35) and 31.15% (19/61), respectively. No differences in hcp gene presence and transcript levels were found between two groups ( P > 0.05). Conclusions: Dynamic monitoring of sTREM-1 and PCT is valuable in identifying Ab infection and colonization. sTREM-1 can be improved by combination with multiple biomarkers in the early stage for identification of infection and colonization. The hcp gene was more likely to be present in the infection cohort.
Collapse
Affiliation(s)
- Xiaolei Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiahui Jiang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Cancer Center, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Chenxing Wei
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjie Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Chen
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueyan Dong
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haitong Wan
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Daojun Yu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Yang Y, Pan D, Tang Y, Li J, Zhu K, Yu Z, Zhu L, Wang Y, Chen P, Li C. H3-T6SS of Pseudomonas aeruginosa PA14 contributes to environmental adaptation via secretion of a biofilm-promoting effector. STRESS BIOLOGY 2022; 2:55. [PMID: 37676573 PMCID: PMC10442045 DOI: 10.1007/s44154-022-00078-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/11/2022] [Indexed: 09/08/2023]
Abstract
Microbial species often occur in complex communities and exhibit intricate synergistic and antagonistic interactions. To avoid predation and compete for favorable niches, bacteria have evolved specialized protein secretion systems. The type VI secretion system (T6SS) is a versatile secretion system widely distributed among Gram-negative bacteria that translocates effectors into target cells or the extracellular milieu via various physiological processes. Pseudomonas aeruginosa is an opportunistic pathogen responsible for many diseases, and it has three independent T6SSs (H1-, H2-, and H3-T6SS). In this study, we found that the H3-T6SS of highly virulent P. aeruginosa PA14 is negatively regulated by OxyR and OmpR, which are global regulatory proteins of bacterial oxidative and acid stress. In addition, we identified a H3-T6SS effector PA14_33970, which is located upstream of VgrG3. PA14_33970 interacted directly with VgrG3 and translocated into host cells. Moreover, we found that H3-T6SS and PA14_33970 play crucial roles in oxidative, acid, and osmotic stress resistance, as well as in motility and biofilm formation. PA14_33970 was identified as a new T6SS effector promoting biofilm formation and thus named TepB. Furthermore, we found that TepB contributes to the virulence of P. aeruginosa PA14 toward Caenorhabditis elegans. Overall, our study indicates that H3-T6SS and its biofilm-promoting effector TepB are regulated by OxyR and OmpR, both of which are important for adaptation of P. aeruginosa PA14 to multiple stressors, providing insights into the regulatory mechanisms and roles of T6SSs in P. aeruginosa.
Collapse
Affiliation(s)
- Yantao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Damin Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanan Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiali Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kaixiang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zonglan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Pombo JP, Ebenberger SP, Müller AM, Wolinski H, Schild S. Impact of Gene Repression on Biofilm Formation of Vibrio cholerae. Front Microbiol 2022; 13:912297. [PMID: 35722322 PMCID: PMC9201469 DOI: 10.3389/fmicb.2022.912297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Vibrio cholerae, the etiological agent of cholera, is a facultative intestinal pathogen which can also survive in aquatic ecosystems in the form of biofilms, surface-associated microbial aggregates embedded in an extracellular matrix, which protects them from predators and hostile environmental factors. Biofilm-derived bacteria and biofilm aggregates are considered a likely source for cholera infections, underscoring the importance of V. cholerae biofilm research not just to better understand bacterial ecology, but also cholera pathogenesis in the human host. While several studies focused on factors induced during biofilm formation, genes repressed during this persistence stage have been fairly neglected. In order to complement these previous studies, we used a single cell-based transcriptional reporter system named TetR-controlled recombination-based in-biofilm expression technology (TRIBET) and identified 192 genes to be specifically repressed by V. cholerae during biofilm formation. Predicted functions of in-biofilm repressed (ibr) genes range from metabolism, regulation, surface association, transmembrane transport as well as motility and chemotaxis. Constitutive (over)-expression of these genes affected static and dynamic biofilm formation of V. cholerae at different stages. Notably, timed expression of one candidate in mature biofilms induced their rapid dispersal. Thus, genes repressed during biofilm formation are not only dispensable for this persistence stage, but their presence can interfere with ordered biofilm development. This work thus contributes new insights into gene silencing during biofilm formation of V. cholerae.
Collapse
Affiliation(s)
- Joao P. Pombo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Anna M. Müller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|