1
|
Ma J, Wang F, Zhu Y, Tian Y, Du C, Yan L, Ding C, Wang D. Oral microbiome dysbiosis may be associated with intra cranial aneurysms. BMC Oral Health 2024; 24:1235. [PMID: 39415150 PMCID: PMC11484204 DOI: 10.1186/s12903-024-05015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Although the etiology of aneurysms remains elusive, recent advances in high-throughput sequencing technology and ongoing human microbiome investigations suggest a potential link between microbiome composition and the onset of various human diseases. OBJECTIVE This study aimed to utilize high-throughput 16 S rRNA gene sequencing to analyze the oral flora bacterial profiles of individuals, comparing patients with intracranial aneurysms to a healthy control group. Importantly, we sought to identify differences in the oral microbiota and offer novel insights and methods for early diagnosis and identification of intracranial aneurysms. METHOD Saliva samples were collected from 60 patients with cerebral aneurysms (case group) and 130 healthy individuals (control group). The V3-V4 region of the bacterial 16 S rRNA gene was amplified and sequenced using the HiSeq high-throughput sequencing platform to establish the bacterial profile. Sequencing data were analyzed using QIIME2 and Metastats software to compare composition differences and relative abundance at the phylum and genus levels in the oral microbiota of the two groups. RESULTS Significant differences in oral microbiota composition were observed between patients in the case and control groups (P < 0.05). Genus-level identification highlighted key positions occupied by Eubacterium, Saccharimonadaceae, Rothia, Gemella, Streptococcus, Lactobacillales, Phocaeicola, Bacteroides, Saccharimonadales, and Abiotrophia. CONCLUSION This study revealed noteworthy distinctions in the composition, abundance, and diversity of oral microbiota between intracranial aneurysm patients and healthy controls. These disparities suggest a potential correlation between oral microbiota and the development of intracranial aneurysms, offering new avenues for early diagnosis and intervention. However, limitations such as a small sample size, lack of prospective design, and absence of causal inference warrant further validation and exploration.
Collapse
Affiliation(s)
- Jing Ma
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou, Fujian, 350005, China
| | - Fangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou, Fujian, 350005, China
| | - Yang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou, Fujian, 350005, China
| | - Yu Tian
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou, Fujian, 350005, China
| | - Chengzhong Du
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou, Fujian, 350005, China
| | - Lingjun Yan
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou, Fujian, 350005, China.
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou, Fujian, 350005, China.
| | - Chenyu Ding
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou, Fujian, 350005, China.
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou, Fujian, 350005, China.
| | - Dengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou, Fujian, 350005, China.
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou, Fujian, 350005, China.
| |
Collapse
|
2
|
Lin JH, Lin CH, Kuo YW, Liao CA, Chen JF, Tsai SY, Li CM, Hsu YC, Huang YY, Hsia KC, Yeh YT, Ho HH. Probiotic Lactobacillus fermentum TSF331, Lactobacillus reuteri TSR332, and Lactobacillus plantarum TSP05 improved liver function and uric acid management-A pilot study. PLoS One 2024; 19:e0307181. [PMID: 39046973 PMCID: PMC11268587 DOI: 10.1371/journal.pone.0307181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is predominantly associated with metabolic disturbances representing aberrant liver function and increased uric acid (UA) levels. Growing evidences have suggested a close relationship between metabolic disturbances and the gut microbiota. A placebo-controlled, double-blinded, randomized clinical trial was therefore conducted to explore the impacts of daily supplements with various combinations of the probiotics, Lactobacillus fermentum TSF331, Lactobacillus reuteri TSR332, and Lactobacillus plantarum TSP05 with a focus on liver function and serum UA levels. Test subjects with abnormal levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and UA were recruited and randomly allocated into six groups. Eighty-two participants successfully completed the 60-day intervention without any dropouts or occurrence of adverse events. The serum AST, ALT, and UA levels were significantly reduced in all treatment groups (P < 0.05). The fecal microbiota analysis revealed the intervention led to an increase in the population of commensal bacteria and a decrease in pathobiont bacteria, especially Bilophila wadsworthia. The in vitro study indicated the probiotic treatments reduced lipid accumulation and inflammatory factor expressions in HepG2 cells, and also promoted UA excretion in Caco-2 cells. The supplementation of multi-strain probiotics (TSF331, TSR332, and TSP05) together can improve liver function and UA management and may have good potential in treating asymptomatic MAFLD. Trial registration. The trial was registered in the US Library of Medicine (clinicaltrials.gov) with the number NCT06183801 on December 28, 2023.
Collapse
Affiliation(s)
- Jia-Hung Lin
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Chi-Huei Lin
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yi-Wei Kuo
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Chorng-An Liao
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City, Taiwan
| | - Jui-Fen Chen
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Shin-Yu Tsai
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Ching-Min Li
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yu-Chieh Hsu
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yen-Yu Huang
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Ko-Chiang Hsia
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung City, Taiwan
| | - Hsieh-Hsun Ho
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| |
Collapse
|
3
|
Wang M, Wang Z, Yu Y, Zhao D, Shen Z, Wei F. From teeth to brain: dental caries causally affects the cortical thickness of the banks of the superior temporal sulcus. BMC Oral Health 2024; 24:124. [PMID: 38263072 PMCID: PMC10807149 DOI: 10.1186/s12903-024-03899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVES Dental caries is one of the most prevalent oral diseases and causes of tooth loss. Cross-sectional studies observed epidemiological associations between dental caries and brain degeneration disorders, while it is unknown whether dental caries causally affect the cerebral structures. This study tested whether genetically proxied DMFS (the sum of Decayed, Missing, and Filled tooth Surfaces) causally impacts the brain cortical structure using Mendelian randomization (MR). METHODS The summary-level GWAS meta-analysis data from the GLIDE consortium were used for DMFS, including 26,792 participants. ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) consortium GWAS summary data of 51,665 patients were used for brain structure. This study estimated the causal effects of DMFS on the surface area (SA) and thickness (TH) of the global cortex and functional cortical regions accessed by magnetic resonance imaging (MRI). Inverse-variance weighted (IVW) was used as the primary estimate, the MR pleiotropy residual sum and outlier (MR-PRESSO), the MR-Egger intercept test, and leave-one-out analyses were used to examine the potential horizontal pleiotropy. RESULTS Genetically proxied DMFS decreases the TH of the banks of the superior temporal sulcus (BANSSTS) with or without global weighted (weighted, β = - 0.0277 mm, 95% CI: - 0.0470 mm to - 0.0085 mm, P = 0.0047; unweighted, β = - 0.0311 mm, 95% CI: - 0.0609 mm to - 0.0012 mm, P = 0.0412). The causal associations were robust in various sensitivity analyses. CONCLUSIONS Dental caries causally decrease the cerebral cortical thickness of the BANKSSTS, a cerebral cortical region crucial for language-related functions, and is the most affected brain region in Alzheimer's disease. This investigation provides the first evidence that dental caries causally affects brain structure, proving the existence of teeth-brain axes. This study also suggested that clinicians should highlight the causal effects of dental caries on brain disorders during the diagnosis and treatments, the cortical thickness of BANKSSTS is a promising diagnostic measurement for dental caries-related brain degeneration.
Collapse
Affiliation(s)
- Mengqiao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Ziyao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Yajie Yu
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, 100191, China
| | - Delu Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Zhiyuan Shen
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| |
Collapse
|
4
|
Su KY, Koh Kok JY, Chua YW, Ong SD, Ser HL, Pusparajah P, San Saw P, Goh BH, Lee WL. Bacterial extracellular vesicles in biofluids as potential diagnostic biomarkers. Expert Rev Mol Diagn 2022; 22:1057-1062. [PMID: 36629056 DOI: 10.1080/14737159.2022.2166403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are spherical membrane-derived lipid bilayers released by cells. The human microbiota consists of trillions of microorganisms, with bacteria being the largest group secreting microbial EVs. The discovery of bacterial EVs (BEVs) has garnered interest among researchers as potential diagnostic markers, given that the microbiota is known to be associated with various diseases and EVs carry important macromolecular cargo for intercellular interaction. AREAS COVERED The differential bacterial composition identified from BEVs isolated from biofluids between patients and healthy controls may be valuable for detecting diseases. Therefore, BEVs may serve as novel diagnostic markers. Literature search on PubMed and Google Scholar databases was conducted. In this special report, we outline the commonly used approach for investigating BEVs in biofluids, the 16S ribosomal RNA gene sequencing of V3-V4 hypervariable regions, and the recent studies exploring the potential of BEVs as biomarkers for various diseases. EXPERT OPINION The emerging field of BEVs offers new possibilities for the diagnosis of various types of diseases, although there remain issues that need to be resolved in this research area to implement BEVs in clinical applications. Hence, it is important for future studies to take these challenges into consideration when investigating the diagnostic value of BEVs.
Collapse
Affiliation(s)
- Kar-Yan Su
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jie-Yi Koh Kok
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Yie-Wei Chua
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Shearn-Dior Ong
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Hooi Leng Ser
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Kuala Lumpur, Malaysia
| | - Priyia Pusparajah
- Medical Health and Translational Research Group (MHTR), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Pui San Saw
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
5
|
Wenyan H, Pujue Z, Yuhang H, Zhenni L, Yuejun W, Wenbin W, Ziling L, Pathak JL, Sujuan Z. The impact of Er:YAG laser combined with fluoride treatment on the supragingival plaque microbiome in children with multiple caries: a dynamic study. BMC Oral Health 2022; 22:537. [PMID: 36424564 PMCID: PMC9685943 DOI: 10.1186/s12903-022-02537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND As a minimally invasive tool for caries prevention tool, the pulsed erbium:yttrium-aluminum-garnet (Er:YAG) laser is being used in a large number of studies. Microorganisms are extremely vital in the occurrence and development of dental caries. However, the impact of Er:YAG laser irradiation combined with fluoride on the dynamic microbial changes that occur in dental plaques is still uncertain. In this study, we examined the effect of an Er:YAG laser combined with fluorine on supragingival microbial composition and diversity in children with multiple caries. METHODS In this study, dental plaque samples (n = 48) were collected from 12 children with over 8 filled teeth. Supragingival plaques from left mandibular molars before (CB) and after fluoride treatment (CA) and right mandibular molars before (EB) and after fluoride+Er:YAG laser treatment (EA) were collected from each patient. In CB and EB groups, the samples were collected just before the treatments. In CA and EA groups, the samples were collected 1 month after treatments. Then, all specimens were subjected to 16S rRNA high-throughput sequencing to investigate the changes in microbial composition and diversity in mandibular molar supragingival plaques before and after fluoride or fluoride+Er:YAG laser treatment. RESULTS The dental plaque microbial diversity was higher in the EA group than in the EB group (baseline levels), and the microbial composition changed in EA group compared with EB group (P < 0.05). The levels of microorganisms associated with caries occurrence, including Proteobacteria, Fusobacteria, and Bacteroidetes, declined, while the levels of Faecacterium, Fastidiosipila, Vibrio, and Shewanella increased in EA group compared with EB group. The declines in Firmicutes, Streptococcus, Fusobacterium, and Veillonella levels were significantly lower in the EA group than in the CA group. CONCLUSION The combined application of the Er:YAG laser and fluoride may be more effective than using fluoride alone in reducing the proportion of cariogenic bacteria, increasing the diversity of plaque microorganisms, and further promoting the microecological balance.
Collapse
Affiliation(s)
- Huang Wenyan
- grid.410737.60000 0000 8653 1072Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182 Guangdong China
| | - Zheng Pujue
- grid.410737.60000 0000 8653 1072Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182 Guangdong China
| | - Huang Yuhang
- grid.410737.60000 0000 8653 1072Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182 Guangdong China
| | - Liu Zhenni
- grid.410737.60000 0000 8653 1072Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182 Guangdong China
| | - Wu Yuejun
- grid.410737.60000 0000 8653 1072Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182 Guangdong China
| | - Wu Wenbin
- grid.410737.60000 0000 8653 1072Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182 Guangdong China
| | - Li Ziling
- grid.410737.60000 0000 8653 1072Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182 Guangdong China
| | - Janak L. Pathak
- grid.410737.60000 0000 8653 1072Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182 Guangdong China
| | - Zeng Sujuan
- grid.410737.60000 0000 8653 1072Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182 Guangdong China
| |
Collapse
|
6
|
Huang C, Chu C, Peng Y, Zhang N, Yang Z, You J, Wei F. Correlations between gastrointestinal and oral microbiota in children with cerebral palsy and epilepsy. Front Pediatr 2022; 10:988601. [PMID: 36440329 PMCID: PMC9686843 DOI: 10.3389/fped.2022.988601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
We here studied the correlation between gut and oral microbiota in children with cerebral palsy and Epilepsy (CPE). We enrolled 27 children with this condition from the social welfare center of Longgang District, collected their oral plaque and stool samples, and analyzed their gut microbiota (GM) and oral microbiota (OM) through 16S rRNA gene sequencing. Taxonomical annotation revealed that the levels of Firmicutes and Bacteroides in the oral cavity were significantly lower in CPE children than in healthy children, whereas the abundance of Actinomycetes increased significantly in CPE children. In addition, Prevotella, Fusobacterium, and Neisseria were the top three abundant genera, representing 15.49%, 9.34%, and 7.68% of the OM and suggesting potential correlations with caries, periodontitis, and malnutrition. For the GM, Bifidobacterium, Bacteroides, and Prevotella were the top three abundant genera in CPE children and probably contributed to the development of chronic inflammation and malnutrition. Furthermore, the OM and GM correlated with each other closely, and the bacterial components of these microbiota in CPE children were remarkably different from those in healthy children, such as Bifidobacterium, Fusobacterium, Bacteroides, and Neisseria. Conclusively, dysbiotic OM can translocate to the intestinal tract and induce GM dysbiosis, suggesting the consistency between OM and GM variations. Altered oral and gut microbial structures have potential impacts on the occurrence of clinical diseases such as periodontitis, caries, and malnutrition.
Collapse
Affiliation(s)
- Congfu Huang
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital, Shenzhen, China
| | | | - Yuanping Peng
- The Outpatient Department, Longgang District Social Welfare Center, Shenzhen, China
| | - Nong Zhang
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Zhenyu Yang
- School of Statistics and Data Science, NanKai University, Tianjin, China
| | - Jia You
- Shenzhen Middle School, Shenzhen, China
| | - Fengxiang Wei
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital, Shenzhen, China
| |
Collapse
|