1
|
Kurabi A, Dewan K, Kerschner JE, Leichtle A, Li JD, Santa Maria PL, Preciado D. PANEL 3: Otitis media animal models, cell culture, tissue regeneration & pathophysiology. Int J Pediatr Otorhinolaryngol 2024; 176:111814. [PMID: 38101097 DOI: 10.1016/j.ijporl.2023.111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
OBJECTIVE To review and summarize recently published key articles on the topics of animal models, cell culture studies, tissue biomedical engineering and regeneration, and new models in relation to otitis media (OM). DATA SOURCE Electronic databases: PubMed, National Library of Medicine, Ovid Medline. REVIEW METHODS Key topics were assigned to the panel participants for identification and detailed evaluation. The PubMed reviews were focused on the period from June 2019 to June 2023, in any of the objective subject(s) or keywords listed above, noting the relevant references relating to these advances with a global overview and noting areas of recommendation(s). The final manuscript was prepared with input from all panel members. CONCLUSIONS In conclusion, ex vivo and in vivo OM research models have seen great advancements in the past 4 years. From the usage of novel genetic and molecular tools to the refinement of in vivo inducible and spontaneous mouse models, to the introduction of a wide array of reliable middle ear epithelium (MEE) cell culture systems, the next five years are likely to experience exponential growth in OM pathophysiology discoveries. Moreover, advances in these systems will predictably facilitate rapid means for novel molecular therapeutic studies.
Collapse
Affiliation(s)
- Arwa Kurabi
- Department of Otolaryngology, University of California San Diego, School of Medicine, La Jolla, CA, USA.
| | - Kalyan Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Joseph E Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anke Leichtle
- Department of Otorhinolaryngology, University of Luebeck, Luebeck, Germany
| | - Jian-Dong Li
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Peter Luke Santa Maria
- Department of Otolaryngology - Head & Neck Surgery, Stanford University, Stanford, CA, USA
| | - Diego Preciado
- Children's National Hospital, Division of Pediatric Otolaryngology, Washington, DC, USA
| |
Collapse
|
2
|
Nokso-Koivisto J, Ehrlich GD, Enoksson F, Komatsu K, Mason K, Melhus Å, Patel JA, Vijayasekaran S, Ryan A. Otitis media: Interactions between host and environment, immune and inflammatory responses. Int J Pediatr Otorhinolaryngol 2024; 176:111798. [PMID: 38041988 DOI: 10.1016/j.ijporl.2023.111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE To review and highlight progress in otitis media (OM) research in the areas of immunology, inflammation, environmental influences and host-pathogen responses from 2019 to 2023. Opportunities for innovative future research were also identified. DATA SOURCES PubMed database of the National Library of Medicine. REVIEW METHODS Key topics were assigned to each panel member for detailed review. Search of the literature was from June 2019 until February 2023. Draft reviews were collated, circulated, and discussed among panel members at the 22nd International Symposium on Recent Advances in Otitis Media in June 2023. The final manuscript was prepared and approved by all the panel members. CONCLUSIONS Important advances were identified in: environmental influences that enhance OM susceptibility; polymicrobial middle ear (ME) infections; the role of adaptive immunity defects in otitis-proneness; additional genes linked to OM; leukocyte contributions to OM pathogenesis and recovery; and novel interventions in OM based on host responses to infection. Innovative areas of research included: identification of novel bacterial genes and pathways important for OM persistence, bacterial adaptations and evolution that enhance chronicity; animal and human ME gene expression, including at the single-cell level; and Sars-CoV-2 infection of the ME and Eustachian tube.
Collapse
Affiliation(s)
- Johanna Nokso-Koivisto
- Department of Otorhinolaryngology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Garth D Ehrlich
- Department of Microbiology and Immunology and Department of Otolaryngology - Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Kensei Komatsu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Kevin Mason
- The Research Institute at Nationwide Children's Hospital, Infectious Diseases Institute, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Åsa Melhus
- Department of Medical Sciences, Section of Clinical Bacteriology, Uppsala University, Uppsala, Sweden
| | - Janak A Patel
- Department of Infection Control & Healthcare Epidemiology and Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Shiyan Vijayasekaran
- Perth ENT Centre, Perth Children's Hospital, University of Western Australia, Perth, Australia
| | - Allen Ryan
- Department of Surgery, Division of Otolaryngology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
3
|
Azar A, Bhutta MF, Del-Pozo J, Milne E, Cheeseman M. Trans-cortical vessels in the mouse temporal bulla bone are a means to recruit myeloid cells in chronic otitis media and limit peripheral leukogram changes. Front Genet 2022; 13:985214. [PMID: 36246635 PMCID: PMC9555619 DOI: 10.3389/fgene.2022.985214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic otitis media, inflammation of the middle ear, is a sequel to acute otitis media in ∼8% of children. Chronic otitis media with effusion is the most common cause of childhood deafness and is characterised by effusion of white blood cells into the auditory bulla cavity. Skull flat bones have trans-cortical vessels which are responsible for the majority of blood flow in and out of the bone. In experimental models of stroke and aseptic meningitis there is preferential recruitment of myeloid cells (neutrophils and monocytes) from the marrow in skull flat bones. We report trans-cortical vessels in the mouse temporal bone connect to the bulla mucosal vasculature and potentially represent a means to recruit myeloid cells directly into the inflamed bulla. The mutant mouse strains Junbo (MecomJbo/+) and Jeff (Fbxo11Jf/+) develop chronic otitis spontaneously; MecomJbo/+ mice have highly cellular neutrophil (90%) rich bulla exudates whereas Fbxo11Jf/+ mice have low cellularity serous effusions (5% neutrophils) indicating differing demand for neutrophil recruitment. However we found peripheral leukograms of MecomJbo/+ and Fbxo11Jf/+ mice are similar to their respective wild-type littermate controls with healthy bullae and infer preferential mobilization of myeloid cells from temporal bulla bone marrow may mitigate the need for a systemic inflammatory reaction. The cytokines, chemokines and haematopoietic factors found in the inflamed bulla represent candidate signalling molecules for myeloid cell mobilization from temporal bone marrow. The density of white blood cells in the bulla cavity is positively correlated with extent of mucosal thickening in MecomJbo/+, Fbxo11Jf/+, and EdaTa mice and is accompanied by changes in epithelial populations and bone remodelling. In MecomJbo/+ mice there was a positive correlation between bulla cavity WBC numbers and total bacterial load. The degree of inflammation varies between contralateral bullae and between mutant mice of different ages suggesting inflammation may wax and wane and may be re-initiated by a new wave of bacterial infection. Clearance of white blood cells and inflammatory stimuli from the bulla cavity is impaired and this may create a pro-inflammatory feedback loop which further exacerbates otitis media and delays its resolution.
Collapse
Affiliation(s)
- Ali Azar
- Developmental Biology Division, Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Mahmood F. Bhutta
- Brighton and Sussex Medical School, Brighton, United Kingdom
- Department of ENT, Royal Sussex County Hospital, Brighton, United Kingdom
| | - Jorge Del-Pozo
- Veterinary Pathology, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Elspeth Milne
- Veterinary Pathology, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Michael Cheeseman
- Developmental Biology Division, Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Comparative Pathology, Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- *Correspondence: Michael Cheeseman,
| |
Collapse
|
4
|
Kurabi A, Hur DG, Pak K, Gibson M, Webster NJG, Baird A, Eliceiri BP, Ryan AF. The ECRG4 cleavage product augurin binds the endotoxin receptor and influences the innate immune response during otitis media. Front Genet 2022; 13:932555. [PMID: 36092940 PMCID: PMC9461705 DOI: 10.3389/fgene.2022.932555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Otitis media (OM), the most common disease of childhood, is typically characterized by bacterial infection of the middle ear (ME). Prominent features of OM include hyperplasia of the ME mucosa, which transforms from a monolayer of simple squamous epithelium with minimal stroma into a full-thickness respiratory epithelium in 2-3 days after infection. Analysis of the murine ME transcriptome during OM showed down-regulation of the tumor suppressor gene Ecrg4 that was temporally related to mucosal hyperplasia and identified stromal cells as the primary ECRG4 source. The reduction in Ecrg4 gene expression coincided with the cleavage of ECRG4 protein to release an extracellular fragment, augurin. The duration of mucosal hyperplasia during OM was greater in Ecrg4 -/- mice, the number of infiltrating macrophages was enhanced, and ME infection cleared more rapidly. ECRG4-null macrophages showed increased bacterial phagocytosis. Co-immunoprecipitation identified an association of augurin with TLR4, CD14 and MD2, the components of the lipopolysaccharide (LPS) receptor. The results suggest that full-length ECRG4 is a sentinel molecule that potentially inhibits growth of the ME stroma. Processing of ECRG4 protein during inflammation, coupled with a decline in Ecrg4 gene expression, also influences the behavior of cells that do not express the gene, limiting the production of growth factors by epithelial and endothelial cells, as well as the activity of macrophages.
Collapse
Affiliation(s)
- Arwa Kurabi
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States,*Correspondence: Arwa Kurabi,
| | - Dong Gu Hur
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States,Department of Otorhinolaryngology, Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Kwang Pak
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States
| | - Madeline Gibson
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States
| | - Nicholas J. G. Webster
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States,San Diego Veterans Administration Healthcare System, San Diego, CA, United States
| | - Andrew Baird
- Department of Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Brian P. Eliceiri
- Department of Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Allen F. Ryan
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States,San Diego Veterans Administration Healthcare System, San Diego, CA, United States
| |
Collapse
|