1
|
Gupta S, Pradhan A, Rashmi D, Mittal M, Das S, Sau AK. Helical Domain Changes between hGBP3 and hGBP3ΔC Result in Distinct Oligomers and Anti-HCV Activity. Biochemistry 2024; 63:2892-2903. [PMID: 39214624 DOI: 10.1021/acs.biochem.4c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Human guanylate binding proteins (hGBPs), which are large GTPases, are crucial for cell-autonomous immunity, including antiviral activity. hGBPs contain two domains: an N-terminal catalytic domain and a C-terminal helical domain. hGBP3 and its splice variant hGBP3ΔC have been shown to possess anti-influenza activity in lung epithelial cells. These two proteins have identical catalytic domains but different helical domains. It is unclear whether this difference affects GTPase activity or protein oligomerization. Using combined approaches, we show that both proteins hydrolyze GTP to GDP and further to GMP. However, they form different oligomers. hGBP3 exists as a hexamer in the free form, whereas hGBP3ΔC forms large oligomers, indicating that helical domain modifications of the splice variant result in distinct oligomers. Furthermore, unlike other homologues, neither protein changes its oligomeric state upon substrate binding or hydrolysis. Deleting the helical domain of hGBP3 (hGBP31-309) yields a monomer, suggesting that the helical domain promotes the hexamerization of hGBP3. We overexpressed hGBP3 and hGBP3ΔC to test their efficacy against HCV growth and found that hGBP3 inhibits HCV multiplication, while the splice variant has little effect. Our mutational studies on hGBP3 show that substrate hydrolysis, rather than substrate binding, is required for inhibiting HCV growth. This suggests that substrate hydrolysis generates a protein conformation essential for anti-HCV activity. Additionally, truncated hGBP31-309 does not exhibit anti-HCV activity. Altogether, these findings suggest that the helical domain of hGBP3 is crucial for reducing HCV growth through hexamer formation and that its variations result in different oligomers and antiviral activities.
Collapse
Affiliation(s)
- Sowmiya Gupta
- Protein Engineering Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aunji Pradhan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Divya Rashmi
- Protein Engineering Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Monika Mittal
- Protein Engineering Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Apurba Kumar Sau
- Protein Engineering Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
2
|
Li Z, Wang S, Han J, Yang G, Xi L, Zhang C, Cui Y, Yin S, Zhang Y, Zhang H. Insights into the effect of guanylate-binding protein 1 on the survival of Brucella intracellularly. Vet Microbiol 2024; 293:110089. [PMID: 38678845 DOI: 10.1016/j.vetmic.2024.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
Brucellosis is a zoonotic disease that affects wild and domestic animals. It is caused by members of the bacterial genus Brucella. Guanylate-binding protein 1 (GBP1) is associated with microbial infections. However, the role of GBP1 during Brucella infection remains unclear. This investigation aimed to identify the association of GBP1 with brucellosis. Results showed that Brucella infection induced GBP1 upregulation in RAW 264.7 murine macrophages. Small interfering GBP1 targeting RNAs were utilized to explore how GBP1 regulates the survival of Brucella intracellularly. Results revealed that GBP1 knockdown promoted Brucella's survival ability, activated Nod-like receptor (NLR) containing a pyrin domain 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammatory corpuscles, and induced pro-inflammatory cytokines IFN-γ and IL-1β. Furthermore, Brucella stimulated the expression of GBP1 in bone marrow-derived macrophages (BMDMs) and mice. During the inhibition of GBP1 in BMDMs, the intracellular growth of Brucella increased. In comparison, GBP1 downregulation enhanced the accumulation of Brucella-induced reactive oxygen species (ROS) in macrophages. Overall, the data indicate a significant role of GBP1 in regulating brucellosis and suggest the function underlying its suppressive effect on the survival and growth of Brucella intracellularly.
Collapse
Affiliation(s)
- Zhiqiang Li
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence 476000, China; School of Medical Technology, Shangqiu Medical College, Shangqiu, Henan Provence 476005, China
| | - Shuli Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence 476000, China
| | - Jincheng Han
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence 476000, China
| | - Guangli Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence 476000, China
| | - Li Xi
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence 476000, China
| | - Chunmei Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence 476000, China
| | - Yanyan Cui
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence 476000, China
| | - Shuanghong Yin
- College of Biology, Agriculture and Forestry, Tongren University, Tongren, Guizhou Province 554300, China
| | - Yu Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Province 832003, China
| | - Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Province 832003, China.
| |
Collapse
|
3
|
Bender D, Koulouri A, Wen X, Glitscher M, Schollmeier A, Fernandes da Costa L, Murra RO, Carra GP, Haberger V, Praefcke GJK, Hildt E. Guanylate-binding protein 1 acts as a pro-viral factor for the life cycle of hepatitis C virus. PLoS Pathog 2024; 20:e1011976. [PMID: 38315728 PMCID: PMC10868826 DOI: 10.1371/journal.ppat.1011976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/15/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Viral infections trigger the expression of interferons (IFNs) and interferon stimulated genes (ISGs), which are crucial to modulate an antiviral response. The human guanylate binding protein 1 (GBP1) is an ISG and exhibits antiviral activity against several viruses. In a previous study, GBP1 was described to impair replication of the hepatitis C virus (HCV). However, the impact of GBP1 on the HCV life cycle is still enigmatic. To monitor the expression and subcellular distribution of GBP1 and HCV we performed qPCR, Western blot, CLSM and STED microscopy, virus titration and reporter gene assays. In contrast to previous reports, we observed that HCV induces the expression of GBP1. Further, to induce GBP1 expression, the cells were stimulated with IFNγ. GBP1 modulation was achieved either by overexpression of GBP1-Wt or by siRNA-mediated knockdown. Silencing of GBP1 impaired the release of viral particles and resulted in intracellular HCV core accumulation, while overexpression of GBP1 favored viral replication and release. CLSM and STED analyses revealed a vesicular distribution of GBP1 in the perinuclear region. Here, it colocalizes with HCV core around lipid droplets, where it acts as assembly platform and thereby favors HCV morphogenesis and release. Collectively, our results identify an unprecedented function of GBP1 as a pro-viral factor. As such, it is essential for viral assembly and release acting through tethering factors involved in HCV morphogenesis onto the surface of lipid droplets.
Collapse
Affiliation(s)
- Daniela Bender
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | | | - Xingjian Wen
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Mirco Glitscher
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | | | | | | | - Gert Paul Carra
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | | | - Gerrit J. K. Praefcke
- Paul-Ehrlich-Institut, Department Haematology and Transfusion Medicine, Langen, Germany
| | - Eberhard Hildt
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| |
Collapse
|