1
|
Chen R, Zou J, Chen J, Wang L, Kang R, Tang D. Immune aging and infectious diseases. Chin Med J (Engl) 2024:00029330-990000000-01368. [PMID: 39679477 DOI: 10.1097/cm9.0000000000003410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT The rise in global life expectancy has led to an increase in the older population, presenting significant challenges in managing infectious diseases. Aging affects the innate and adaptive immune systems, resulting in chronic low-grade inflammation (inflammaging) and immune function decline (immunosenescence). These changes would impair defense mechanisms, increase susceptibility to infections and reduce vaccine efficacy in older adults. Cellular senescence exacerbates these issues by releasing pro-inflammatory factors, further perpetuating chronic inflammation. Moreover, comorbidities, such as cardiovascular disease and diabetes, which are common in older adults, amplify immune dysfunction, while immunosuppressive medications further complicate responses to infections. This review explores the molecular and cellular mechanisms driving inflammaging and immunosenescence, focusing on genomic instability, telomere attrition, and mitochondrial dysfunction. Additionally, we discussed how aging-associated immune alterations influence responses to bacterial, viral, and parasitic infections and evaluated emerging antiaging strategies, aimed at mitigating these effects to improve health outcomes in the aging population.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ju Zou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiawang Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ling Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Chen L, Shao C, Li J, Zhu F. Impact of Immunosenescence on Vaccine Immune Responses and Countermeasures. Vaccines (Basel) 2024; 12:1289. [PMID: 39591191 PMCID: PMC11598585 DOI: 10.3390/vaccines12111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
The biological progression of aging encompasses complex physiological processes. As individuals grow older, their physiological functions gradually decline, including compromised immune responses, leading to immunosenescence. Immunosenescence significantly elevates disease susceptibility and severity in older populations while concurrently compromising vaccine-induced immune responses. This comprehensive review aims to elucidate the implications of immunosenescence for vaccine-induced immunity and facilitate the development of optimized vaccination strategies for geriatric populations, with specific focus on COVID-19, influenza, pneumococcal, herpes zoster, and respiratory syncytial virus (RSV) vaccines. This review further elucidates the relationship between immunosenescence and vaccine-induced immunity. This review presents a systematic evaluation of intervention strategies designed to enhance vaccine responses in older populations, encompassing adjuvant utilization, antigen doses, vaccination frequency modification, inflammatory response modulation, and lifestyle interventions, including physical activity and nutritional modifications. These strategies are explored for their potential to improve current vaccine efficacy and inform the development of next-generation vaccines for geriatric populations.
Collapse
Affiliation(s)
- Li Chen
- School of Public Health, Southeast University, Nanjing 210096, China; (L.C.); (C.S.)
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Chengwei Shao
- School of Public Health, Southeast University, Nanjing 210096, China; (L.C.); (C.S.)
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Jingxin Li
- School of Public Health, Southeast University, Nanjing 210096, China; (L.C.); (C.S.)
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Fengcai Zhu
- School of Public Health, Southeast University, Nanjing 210096, China; (L.C.); (C.S.)
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| |
Collapse
|
3
|
Tchalla EYI, Betadpur A, Khalil AY, Bhalla M, Bou Ghanem EN. Sex-based difference in immune responses and efficacy of the pneumococcal conjugate vaccine. J Leukoc Biol 2024:qiae177. [PMID: 39141715 DOI: 10.1093/jleuko/qiae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024] Open
Abstract
Vaccine-mediated protection and susceptibility to Streptococcus pneumoniae (pneumococcus) infections are influenced by biological sex. The incidence of invasive pneumococcal disease remains higher in males compared to females even after the introduction of the pneumococcal conjugate vaccine (PCV). However, sex-based differences in the immune response to this conjugate vaccine remain unexplored. To investigate those differences, we vaccinated adult male and female mice with PCV and assessed cellular and humoral immune responses. Compared to females, male mice displayed lower levels of T follicular helper cells, germinal center B cells and plasmablasts, which are all required for antibody production following vaccination. This was linked to lower IgG and IgM levels against pneumococci and lower isotype switching to IgG3 in vaccinated males. Due to lower antibody levels, sera of vaccinated male mice had lower efficacy in several anti-pneumococcal functions including neutralization of bacterial binding to pulmonary epithelial cells as well as direct cytotoxicity against S. pneumoniae. Importantly, while the vaccine was highly protective in females, vaccinated males succumbed to infection more readily and were more susceptible to both lung-localized infection and systemic spread following S. pneumoniae challenge. These findings identify sex-based differences in immune responses to PCV that can inform future vaccine strategies.
Collapse
Affiliation(s)
- Essi Y I Tchalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, USA
| | - Anagha Betadpur
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, USA
| | - Andrew Y Khalil
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, USA
| | - Manmeet Bhalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, USA
| | - Elsa N Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, USA
| |
Collapse
|
4
|
Meteva D, Vinci R, Seppelt C, Abdelwahed YS, Pedicino D, Nelles G, Skurk C, Haghikia A, Rauch-Kröhnert U, Gerhardt T, Straessler E, Zhao Y, Golla F, Joner M, Rai H, Kratzer A, Arnal HG, Liuzzo G, Klotsche J, Crea F, Landmesser U, Leistner DM, Kränkel N. Toll-like receptor 2, hyaluronan, and neutrophils play a key role in plaque erosion: the OPTICO-ACS study. Eur Heart J 2023; 44:3892-3907. [PMID: 37381760 DOI: 10.1093/eurheartj/ehad379] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND AND AIMS In one-third of patients with acute coronary syndrome (ACS), thrombosis occurs despite an intact fibrous cap (IFC) (IFC-ACS, 'plaque erosion'). Recent studies emphasize neutrophils as the immediate inflammatory response in this pathology, but their exact molecular activation patterns are still poorly understood and may represent future therapeutic targets. METHODS AND RESULTS Thirty-two patients with IFC-ACS and matched patients with ACS with ruptured fibrous cap (RFC) (RFC-ACS) from the OPTICO-ACS study were included, and blood samples were collected from the local site of the culprit lesion and the systemic circulation. Neutrophil surface marker expression was quantified by flow cytometry. Neutrophil cytotoxicity towards endothelial cells was examined in an ex vivo co-culture assay. Secretion of active matrix metalloproteinase 9 (MMP9) by neutrophils was evaluated using zymography in supernatants and in plasma samples. Optical coherence tomography (OCT)-embedded thrombi were used for immunofluorescence analysis. Toll-like receptor 2 (TLR2) expression was higher on neutrophils from IFC-ACS than RFC-ACS patients. TLR2 stimulation increased the release of active MMP9 from local IFC-ACS-derived neutrophils, which also aggravated endothelial cell death independently of TLR2. Thrombi of IFC-ACS patients exhibited more hyaluronidase 2 with concomitant increase in local plasma levels of the TLR2 ligand: hyaluronic acid. CONCLUSION The current study provides first in-human evidence for distinct TLR2-mediated neutrophil activation in IFC-ACS, presumably triggered by elevated soluble hyaluronic acid. Together with disturbed flow conditions, neutrophil-released MMP9 might be promoting endothelial cell loss-triggered thrombosis and therefore providing a potential future target for a phenotype-specific secondary therapeutic approach in IFC-ACS.
Collapse
Affiliation(s)
- Denitsa Meteva
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, Berlin 12203, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin 12203, Germany
| | - Ramona Vinci
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Largo Francesco Vito 1, Rome 00168, Italy
- Department of Cardiovascular Sciences, IRCCS Fondazione Policlinico Universitario A. Gemelli, Largo Francesco Vito 1, Rome 00168, Italy
| | - Claudio Seppelt
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, Berlin 12203, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin 12203, Germany
- Department of Cardiology and Angiology, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main 60598, Germany
| | - Youssef S Abdelwahed
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, Berlin 12203, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin 12203, Germany
| | - Daniela Pedicino
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Largo Francesco Vito 1, Rome 00168, Italy
- Department of Cardiovascular Sciences, IRCCS Fondazione Policlinico Universitario A. Gemelli, Largo Francesco Vito 1, Rome 00168, Italy
| | - Gregor Nelles
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, Berlin 12203, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Carsten Skurk
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, Berlin 12203, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin 12203, Germany
| | - Arash Haghikia
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, Berlin 12203, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin 12203, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, Berlin 10178, Germany
| | - Ursula Rauch-Kröhnert
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, Berlin 12203, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin 12203, Germany
| | - Teresa Gerhardt
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, Berlin 12203, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin 12203, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, Berlin 10178, Germany
| | - Elisabeth Straessler
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, Berlin 12203, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin 12203, Germany
| | - Yingjie Zhao
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, Berlin 12203, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Felix Golla
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, Berlin 12203, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Michael Joner
- Department of Cardiology and ISAR Research Centre, German Heart Centre Munich, Lazarettstrasse 36, Munich 80636, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Munich, Munich 80636, Germany
| | - Himanshu Rai
- Cardiovascular Research Institute Dublin, Mater Private Network, 73 Eccles Street, Dublin D07 YH66, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephan's Green, Dublin D02 YN77, Ireland
| | - Adelheid Kratzer
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, Berlin 12203, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin 12203, Germany
| | - Hector Giral Arnal
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, Berlin 12203, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin 12203, Germany
| | - Giovanna Liuzzo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Largo Francesco Vito 1, Rome 00168, Italy
- Department of Cardiovascular Sciences, IRCCS Fondazione Policlinico Universitario A. Gemelli, Largo Francesco Vito 1, Rome 00168, Italy
| | - Jens Klotsche
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
- German Rheumatism Research Centre (DRFZ) and Institute for Social Medicine, Epidemiology and Health Economy, Charitė University Medicine Berlin, Campus Charite Mitte, Charitėplatz 1, Berlin 10117, Germany
| | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Largo Francesco Vito 1, Rome 00168, Italy
- Department of Cardiovascular Sciences, IRCCS Fondazione Policlinico Universitario A. Gemelli, Largo Francesco Vito 1, Rome 00168, Italy
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, Berlin 12203, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin 12203, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, Berlin 10178, Germany
| | - David M Leistner
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, Berlin 12203, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin 12203, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, Berlin 10178, Germany
- Department of Cardiology and Angiology, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main 60598, Germany
| | - Nicolle Kränkel
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, Berlin 12203, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin 10117, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin 12203, Germany
| |
Collapse
|
5
|
Cho K. Neutrophil-Mediated Progression of Mild Cognitive Impairment to Dementia. Int J Mol Sci 2023; 24:14795. [PMID: 37834242 PMCID: PMC10572848 DOI: 10.3390/ijms241914795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Cognitive impairment is a serious condition that begins with amnesia and progresses to cognitive decline, behavioral dysfunction, and neuropsychiatric impairment. In the final stage, dysphagia and incontinence occur. There are numerous studies and developed drugs for cognitive dysfunction in neurodegenerative diseases, such as Alzheimer's disease (AD); however, their clinical effectiveness remains equivocal. To date, attempts have been made to overcome cognitive dysfunction and understand and delay the aging processes that lead to degenerative and chronic diseases. Cognitive dysfunction is involved in aging and the disruption of inflammation and innate immunity. Recent reports have indicated that the innate immune system is prevalent in patients with AD, and that peripheral neutrophil markers can predict a decline in executive function in patients with mild cognitive impairment (MCI). Furthermore, altered levels of pro-inflammatory interleukins have been reported in MCI, which have been suggested to play a role in the peripheral immune system during the process from early MCI to dementia. Neutrophils are the first responders of the innate immune system. Neutrophils eliminate harmful cellular debris via phagocytosis, secrete inflammatory factors to activate host defense systems, stimulate cytokine production, kill pathogens, and regulate extracellular proteases and inhibitors. This review investigated and summarized the regulation of neutrophil function during cognitive impairment caused by various degenerative diseases. In addition, this work elucidates the cellular mechanism of neutrophils in cognitive impairment and what is currently known about the effects of activated neutrophils on cognitive decline.
Collapse
Affiliation(s)
- KyoungJoo Cho
- Department of Life Science, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
6
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
7
|
Cadar AN, Martin DE, Bartley JM. Targeting the hallmarks of aging to improve influenza vaccine responses in older adults. Immun Ageing 2023; 20:23. [PMID: 37198683 PMCID: PMC10189223 DOI: 10.1186/s12979-023-00348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Age-related declines in immune response pose a challenge in combating diseases later in life. Influenza (flu) infection remains a significant burden on older populations and often results in catastrophic disability in those who survive infection. Despite having vaccines designed specifically for older adults, the burden of flu remains high and overall flu vaccine efficacy remains inadequate in this population. Recent geroscience research has highlighted the utility in targeting biological aging to improve multiple age-related declines. Indeed, the response to vaccination is highly coordinated, and diminished responses in older adults are likely not due to a singular deficit, but rather a multitude of age-related declines. In this review we highlight deficits in the aged vaccine responses and potential geroscience guided approaches to overcome these deficits. More specifically, we propose that alternative vaccine platforms and interventions that target the hallmarks of aging, including inflammation, cellular senescence, microbiome disturbances, and mitochondrial dysfunction, may improve vaccine responses and overall immunological resilience in older adults. Elucidating novel interventions and approaches that enhance immunological protection from vaccination is crucial to minimize the disproportionate effect of flu and other infectious diseases on older adults.
Collapse
Affiliation(s)
- Andreia N Cadar
- UConn Center On Aging and Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Dominique E Martin
- UConn Center On Aging and Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Jenna M Bartley
- UConn Center On Aging and Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| |
Collapse
|
8
|
Allen JC, Toapanta FR, Baliban SM, Sztein MB, Tennant SM. Reduced immunogenicity of a live Salmonella enterica serovar Typhimurium vaccine in aged mice. Front Immunol 2023; 14:1190339. [PMID: 37207226 PMCID: PMC10188964 DOI: 10.3389/fimmu.2023.1190339] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Non-typhoidal Salmonella (NTS) is responsible for a high burden of foodborne infections and deaths worldwide. In the United States, NTS infections are the leading cause of hospitalizations and deaths due to foodborne illnesses, and older adults (≥65 years) are disproportionately affected by Salmonella infections. Due to this public health concern, we have developed a live attenuated vaccine, CVD 1926 (I77 ΔguaBA ΔclpP ΔpipA ΔhtrA), against Salmonella enterica serovar Typhimurium, a common serovar of NTS. Little is known about the effect of age on oral vaccine responses, and due to the decline in immune function with age, it is critical to evaluate vaccine candidates in older age groups during early product development. Methods In this study, adult (six-to-eight-week-old) and aged (18-month-old) C57BL/6 mice received two doses of CVD 1926 (109 CFU/dose) or PBS perorally, and animals were evaluated for antibody and cell-mediated immune responses. A separate set of mice were immunized and then pre-treated with streptomycin and challenged orally with 108 CFU of wild-type S. Typhimurium SL1344 at 4 weeks postimmunization. Results Compared to PBS-immunized mice, adult mice immunized with CVD 1926 had significantly lower S. Typhimurium counts in the spleen, liver, and small intestine upon challenge. In contrast, there were no differences in bacterial loads in the tissues of vaccinated versus PBS aged mice. Aged mice exhibited reduced Salmonella-specific antibody titers in the serum and feces following immunization with CVD 1926 compared to adult mice. In terms of T cell responses (T-CMI), immunized adult mice showed an increase in the frequency of IFN-γ- and IL-2-producing splenic CD4 T cells, IFN-γ- and TNF-α-producing Peyer's Patch (PP)-derived CD4 T cells, and IFN-γ- and TNF-α-producing splenic CD8 T cells compared to adult mice administered PBS. In contrast, in aged mice, T-CMI responses were similar in vaccinated versus PBS mice. CVD 1926 elicited significantly more PP-derived multifunctional T cells in adult compared to aged mice. Conclusion These data suggest that our candidate live attenuated S. Typhimurium vaccine, CVD 1926, may not be sufficiently protective or immunogenic in older humans and that mucosal responses to live-attenuated vaccines decrease with increasing age.
Collapse
Affiliation(s)
- Jessica C. Allen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Franklin R. Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Scott M. Baliban
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Sharma R, Diwan B, Sharma A, Witkowski JM. Emerging cellular senescence-centric understanding of immunological aging and its potential modulation through dietary bioactive components. Biogerontology 2022; 23:699-729. [PMID: 36261747 PMCID: PMC9581456 DOI: 10.1007/s10522-022-09995-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022]
Abstract
Immunological aging is strongly associated with the observable deleterious effects of human aging. Our understanding of the causes, effects, and therapeutics of aging immune cells has long been considered within the sole purview of immunosenescence. However, it is being progressively realized that immunosenescence may not be the only determinant of immunological aging. The cellular senescence-centric theory of aging proposes a more fundamental and specific role of immune cells in regulating senescent cell (SC) burden in aging tissues that has augmented the notion of senescence immunotherapy. Now, in addition, several emerging studies are suggesting that cellular senescence itself may be prevalent in aging immune cells, and that senescent immune cells exhibiting characteristic markers of cellular senescence, similar to non-leucocyte cells, could be among the key drivers of various facets of physiological aging. The present review integrates the current knowledge related to immunosenescence and cellular senescence in immune cells per se, and aims at providing a cohesive overview of these two phenomena and their significance in immunity and aging. We present evidence and rationalize that understanding the extent and impact of cellular senescence in immune cells vis-à-vis immunosenescence is necessary for truly comprehending the notion of an 'aged immune cell'. In addition, we also discuss the emerging significance of dietary factors such as phytochemicals, probiotic bacteria, fatty acids, and micronutrients as possible modulators of immunosenescence and cellular senescence. Evidence and opportunities related to nutritional bioactive components and immunological aging have been deliberated to augment potential nutrition-oriented immunotherapy during aging.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| | - Bhawna Diwan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| |
Collapse
|
10
|
Mitochondrial ROS production by neutrophils is required for host antimicrobial function against Streptococcus pneumoniae and is controlled by A2B adenosine receptor signaling. PLoS Pathog 2022; 18:e1010700. [DOI: 10.1371/journal.ppat.1010700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/28/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Polymorphonuclear cells (PMNs) control Streptococcus pneumoniae (pneumococcus) infection through various antimicrobial activities. We previously found that reactive oxygen species (ROS) were required for optimal antibacterial function, however, the NADPH oxidase is known to be dispensable for the ability of PMNs to kill pneumococci. In this study, we explored the role of ROS produced by the mitochondria in PMN antimicrobial defense against pneumococci. We found that the mitochondria are an important source of overall intracellular ROS produced by murine PMNs in response to infection. We investigated the host and bacterial factors involved and found that mitochondrial ROS (MitROS) are produced independent of bacterial capsule or pneumolysin but presence of live bacteria that are in direct contact with PMNs enhanced the response. We further found that MyD88-/- PMNs produced less MitROS in response to pneumococcal infection suggesting that released bacterial products acting as TLR ligands are sufficient for inducing MitROS production in PMNs. To test the role of MitROS in PMN function, we used an opsonophagocytic killing assay and found that MitROS were required for the ability of PMNs to kill pneumococci. We then investigated the role of MitROS in host resistance and found that MitROS are produced by PMNs in response to pneumococcal infection. Importantly, treatment of mice with a MitROS scavenger prior to systemic challenge resulted in reduced survival of infected hosts. In exploring host pathways that control MitROS, we focused on extracellular adenosine, which is known to control PMN anti-pneumococcal activity, and found that signaling through the A2B adenosine receptor inhibits MitROS production by PMNs. A2BR-/- mice produced more MitROS and were significantly more resistant to infection. Finally, we verified the clinical relevance of our findings using human PMNs. In summary, we identified a novel pathway that controls MitROS production by PMNs, shaping host resistance against S. pneumoniae.
Collapse
|
11
|
Van Avondt K, Strecker J, Tulotta C, Minnerup J, Schulz C, Soehnlein O. Neutrophils in aging and aging‐related pathologies. Immunol Rev 2022; 314:357-375. [PMID: 36315403 DOI: 10.1111/imr.13153] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the past millennia, life expectancy has drastically increased. While a mere 25 years during Bronze and Iron ages, life expectancy in many European countries and in Japan is currently above 80 years. Such an increase in life expectancy is a result of improved diet, life style, and medical care. Yet, increased life span and aging also represent the most important non-modifiable risk factors for several pathologies including cardiovascular disease, neurodegenerative diseases, and cancer. In recent years, neutrophils have been implicated in all of these pathologies. Hence, this review provides an overview of how aging impacts neutrophil production and function and conversely how neutrophils drive aging-associated pathologies. Finally, we provide a perspective on how processes of neutrophil-driven pathologies in the context of aging can be targeted therapeutically.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Institute of Experimental Pathology (ExPat), Centre of Molecular Biology of Inflammation (ZMBE) University of Münster Münster Germany
| | - Jan‐Kolja Strecker
- Department of Neurology with Institute of Translational Neurology University Hospital Münster Münster Germany
| | - Claudia Tulotta
- Institute of Experimental Pathology (ExPat), Centre of Molecular Biology of Inflammation (ZMBE) University of Münster Münster Germany
| | - Jens Minnerup
- Department of Neurology with Institute of Translational Neurology University Hospital Münster Münster Germany
| | - Christian Schulz
- Department of Medicine I University Hospital, Ludwig Maximilian University Munich Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance Munich Germany
| | - Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Centre of Molecular Biology of Inflammation (ZMBE) University of Münster Münster Germany
- Department of Physiology and Pharmacology (FyFa) Karolinska Institute Stockholm Sweden
| |
Collapse
|
12
|
Aiello A, Ligotti ME, Garnica M, Accardi G, Calabrò A, Pojero F, Arasanz H, Bocanegra A, Blanco E, Chocarro L, Echaide M, Fernandez-Rubio L, Ramos P, Piñeiro-Hermida S, Kochan G, Zareian N, Farzaneh F, Escors D, Caruso C, Candore G. How Can We Improve Vaccination Response in Old People? Part I: Targeting Immunosenescence of Innate Immunity Cells. Int J Mol Sci 2022; 23:9880. [PMID: 36077278 PMCID: PMC9456428 DOI: 10.3390/ijms23179880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022] Open
Abstract
Vaccination, being able to prevent millions of cases of infectious diseases around the world every year, is the most effective medical intervention ever introduced. However, immunosenescence makes vaccines less effective in providing protection to older people. Although most studies explain that this is mainly due to the immunosenescence of T and B cells, the immunosenescence of innate immunity can also be a significant contributing factor. Alterations in function, number, subset, and distribution of blood neutrophils, monocytes, and natural killer and dendritic cells are detected in aging, thus potentially reducing the efficacy of vaccines in older individuals. In this paper, we focus on the immunosenescence of the innate blood immune cells. We discuss possible strategies to counteract the immunosenescence of innate immunity in order to improve the response to vaccination. In particular, we focus on advances in understanding the role and the development of new adjuvants, such as TLR agonists, considered a promising strategy to increase vaccination efficiency in older individuals.
Collapse
Affiliation(s)
- Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Maider Garnica
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Hugo Arasanz
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ester Blanco
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Luisa Chocarro
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Miriam Echaide
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Leticia Fernandez-Rubio
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Pablo Ramos
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Sergio Piñeiro-Hermida
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Nahid Zareian
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - Farzin Farzaneh
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - David Escors
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|