1
|
Han YJ, Kim S, Shin H, Kim HW, Park JD. Protective effect of gut microbiota restored by fecal microbiota transplantation in a sepsis model in juvenile mice. Front Immunol 2024; 15:1451356. [PMID: 39502702 PMCID: PMC11534669 DOI: 10.3389/fimmu.2024.1451356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Restoring a balanced, healthy gut microbiota through fecal microbiota transplantation (FMT) has the potential to be a treatment option for sepsis, despite the current lack of evidence. This study aimed to investigate the effect of FMT on sepsis in relation to the gut microbiota through a sepsis model in juvenile mice. Methods Three-week-old male mice were divided into three groups: the antibiotic treatment (ABX), ABX-FMT, and control groups. The ABX and ABX-FMT groups received antibiotics for seven days. FMT was performed through oral gavage in the ABX-FMT group over the subsequent seven days. On day 14, all mice underwent cecal ligation and puncture (CLP) to induce abdominal sepsis. Blood cytokine levels and the composition of fecal microbiota were analyzed, and survival was monitored for seven days post-CLP. Results Initially, the fecal microbiota was predominantly composed of the phyla Bacteroidetes and Firmicutes. After antibiotic intake, an extreme predominance of the class Bacilli emerged. FMT successfully restored antibiotic-induced fecal dysbiosis. After CLP, the phylum Bacteroidetes became extremely dominant in the ABX-FMT and control groups. Alpha diversity of the microbiota decreased after antibiotic intake, was restored after FMT, and decreased again following CLP. In the ABX group, the concentrations of interleukin-1β (IL-1β), IL-2, IL-6, IL-10, granulocyte macrophage colony-stimulating factor, tumor necrosis factor-α, and C-X-C motif chemokine ligand 1 increased more rapidly and to a higher degree compared to other groups. The survival rate in the ABX group was significantly lower (20.0%) compared to other groups (85.7%). Conclusion FMT-induced microbiota restoration demonstrated a protective effect against sepsis. This study uniquely validates the effectiveness of FMT in a juvenile mouse sepsis model, offering potential implications for clinical research in critically ill children.
Collapse
Affiliation(s)
- Young Joo Han
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - SungSu Kim
- Laboratory Animal Experiment Center, Bionsystems, Uiwang-si, Gyeonggi-do, Republic of Korea
| | - Haksup Shin
- Wide River Institute of Immunology, Seoul National University, Hongcheon-Gun, Gangwon-do, Republic of Korea
| | - Hyun Woo Kim
- Bio Convergence Team, Gangwon Techno Park Technology Innovation Support Center, Chuncheon-si, Gangwon-do, Republic of Korea
| | - June Dong Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Fu ZP, Lee S, Wang RY, Wang YQ. Cronobacter sakazakii induced sepsis-associated arrhythmias through its outer membrane vesicles. iScience 2024; 27:110572. [PMID: 39228788 PMCID: PMC11369384 DOI: 10.1016/j.isci.2024.110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Sepsis-induced arrhythmia, linked to sudden cardiac death, is associated with gut microbiota, though the exact relationship is unclear. This study aimed to elucidate the relationship between Cronobacter sakazakii (C. sakazakii) and arrhythmia. The relative abundance of C. sakazakii was increased in cecal ligation and puncture (CLP)-induced septic mice. Live C. sakazakii, supernatant, and outer membrane vesicles (OMVs) resulted in premature ventricular beat (PVB), sinus arrhythmia (SA), and increased arrhythmia and mortality in sepsis model through dysregulated ion channel proteins. Moreover, short-chain fatty acids (SCFAs) showed antibacterial effects in vitro. We confirmed sodium acetate (C2) and sodium butyrate (C4) protect from C. sakazakii-induced arrhythmia, and C2 and C4 protected from septic arrhythmia by activating free fatty acid receptor 2 and 3 (FFAR2 and FFAR3) in mice. These findings point to how C. sakazakii's OMVs trigger arrhythmia, and SCFAs may be a treatment for septic arrhythmia.
Collapse
Affiliation(s)
- Zhi-ping Fu
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| | - Shuang Lee
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| | - Rui-yao Wang
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| | - Yu-qing Wang
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| |
Collapse
|
3
|
吕 昭, 王 六, 徐 梅, 白 新, 曹 利. [Association between the structure of intestinal flora and inflammatory response in children with sepsis: a prospective cohort study]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:567-574. [PMID: 38926372 PMCID: PMC11562058 DOI: 10.7499/j.issn.1008-8830.2312113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/23/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES To investigate the structural characteristics of intestinal flora in children with sepsis and its association with inflammatory response. METHODS A prospective cohort study was conducted. The children with sepsis who were admitted from December 2021 to January 2023 were enrolled as the sepsis group, and the children with non-sepsis who were admitted during the same period were enrolled as the non-sepsis group. The two groups were compared in terms of the distribution characteristics of intestinal flora, peripheral white blood cell count (WBC), C reactive protein (CRP), and cytokines, and the correlation of the relative abundance of fecal flora with WBC, CRP, and cytokines was analyzed. RESULTS At the genus level, compared with the non-sepsis group, the sepsis group had significantly lower relative abundance of Akkermansia, Ruminococcus, and Alistipes and significantly higher relative abundance of Enterococcus, Streptococcus, and Staphylococcus (P<0.05). At the phylum level, Proteobacteria was the dominant phylum (37.46%) in the group of children with a score of ≤70 from the Pediatric Critical Illness Score (PICS), and Firmicutes was the dominant phylum in the group of children with a score of 71-80 or 81-90 from the PICS (72.20% and 43.88%, respectively). At the genus level, among the 18 specimens, 5 had a relative abundance of >50% for a single flora. Compared with the non-sepsis group, the sepsis group had significant higher levels of WBC, CRP, interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α (P<0.05). The Spearman's rank correlation analysis showed that at the genus level, the relative abundance of Ruminococcus, Alistipes, and Parasutterella in the sepsis group was negatively correlated with the levels of WBC, CRP, and IL-6 (P<0.05); the relative abundance of Enterococcus was positively correlated with the CRP level (P<0.01); the relative abundance of Streptococcus and Staphylococcus was positively correlated with the levels of CRP and IL-6 (P<0.05); the relative abundance of Streptococcus was positively correlated with WBC (P<0.05). CONCLUSIONS Intestinal flora disturbance is observed in children with sepsis, and its characteristics vary with the severity of the disease. The structural changes of intestinal flora are correlated with inflammatory response in children with sepsis.
Collapse
|
4
|
Tosi M, Coloretti I, Meschiari M, De Biasi S, Girardis M, Busani S. The Interplay between Antibiotics and the Host Immune Response in Sepsis: From Basic Mechanisms to Clinical Considerations: A Comprehensive Narrative Review. Antibiotics (Basel) 2024; 13:406. [PMID: 38786135 PMCID: PMC11117367 DOI: 10.3390/antibiotics13050406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Sepsis poses a significant global health challenge due to immune system dysregulation. This narrative review explores the complex relationship between antibiotics and the immune system, aiming to clarify the involved mechanisms and their clinical impacts. From pre-clinical studies, antibiotics exhibit various immunomodulatory effects, including the regulation of pro-inflammatory cytokine production, interaction with Toll-Like Receptors, modulation of the P38/Pmk-1 Pathway, inhibition of Matrix Metalloproteinases, blockade of nitric oxide synthase, and regulation of caspase-induced apoptosis. Additionally, antibiotic-induced alterations to the microbiome are associated with changes in systemic immunity, affecting cellular and humoral responses. The adjunctive use of antibiotics in sepsis patients, particularly macrolides, has attracted attention due to their immune-regulatory effects. However, there are limited data comparing different types of macrolides. More robust evidence comes from studies on community-acquired pneumonia, especially in severe cases with a hyper-inflammatory response. While studies on septic shock have shown mixed results regarding mortality rates and immune response modulation, conflicting findings are also observed with macrolides in acute respiratory distress syndrome. In conclusion, there is a pressing need to tailor antibiotic therapy based on the patient's immune profile to optimize outcomes in sepsis management.
Collapse
Affiliation(s)
- Martina Tosi
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.T.); (I.C.); (M.G.)
| | - Irene Coloretti
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.T.); (I.C.); (M.G.)
| | | | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena, and Reggio Emilia, 41125 Modena, Italy;
| | - Massimo Girardis
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.T.); (I.C.); (M.G.)
| | - Stefano Busani
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.T.); (I.C.); (M.G.)
| |
Collapse
|
5
|
Huang L, Wang X, Huang B, Chen Y, Wu X. Bisphosphoglycerate mutase predicts myocardial dysfunction and adverse outcome in sepsis: an observational cohort study. BMC Infect Dis 2024; 24:173. [PMID: 38326761 PMCID: PMC10848385 DOI: 10.1186/s12879-024-09008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Sepsis not only causes inflammation, but also damages the heart and increases the risk of death. The glycolytic pathway plays a crucial role in the pathogenesis of sepsis-induced cardiac injury. This study aims to investigate the value of bisphosphoglycerate mutase (BPGM), an intermediate in the glycolytic pathway, in evaluating cardiac injury in septic patients and predicting poor prognosis in sepsis. METHODS This prospective study included 85 patients with sepsis. Serum BPGM was measured at the time of enrollment, and the patients were divided into a BPGM-positive group (n = 35) and a BPGM-negative group (n = 50) according to their serum BPGM levels. Baseline clinical and echocardiographic parameters, and clinical outcomes were analyzed and compared between the two groups. Kaplan-Meier analysis was used to compare the 28-day survival rate between BPGM-negative and BPGM-positive patients. Multivariate logistic regression analysis was conducted to explore the independent risk factors for 28-day mortality in septic patients. The predictive value of serum BPGM for sepsis-induced myocardial injury and poor prognosis in sepsis was evaluated using receiver operating characteristic (ROC)curve analysis. RESULT The serum level of BPGM was significantly higher in patients who died within 28 days compared to survivors (p < 0.001). Kaplan-Meier analysis showed that serum BPGM-positive sepsis patients had a significantly shorter 28-day survival time (p < 0.001). Multivariate logistic regression analysis showed that serum BPGM (OR = 9.853, 95%CI 1.844-52.655, p = 0.007) and left ventricular ejection fraction-simpson(LVEF-S) (OR = 0.032, 95% CI 0.002-0.43, p = 0.009) were independent risk factors for 28-day mortality in sepsis patients. Furthermore, BPGM levels was negatively correlated with LVEF-S (p = 0.005) and positively correlated with the myocardial performance (Tei) index (p < 0.001) in sepsis patients. ROC curve analysis showed that serum BPGM was a good predictor of septic myocardial injury and 28-day mortality in sepsis patients. CONCLUSION The level of BPGM in the serum of sepsis patients can serve as a monitoring indicator for myocardial injury, with its high level indicating the occurrence of secondary myocardial injury events and adverse outcomes in sepsis patients.
Collapse
Affiliation(s)
- Long Huang
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provicial Hospital, Fuzhou, China
| | - Xincai Wang
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provicial Hospital, Fuzhou, China.
| | - Bawei Huang
- Medical Department, Shengli Clinical Medical College of Fujian Medical University, Fujian Provicial Hospital, Fuzhou, China
| | - Yu Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provicial Hospital, Fuzhou, China
| | - Xiaodan Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provicial Hospital, Fuzhou, China.
| |
Collapse
|
6
|
De Backer D, Deutschman CS, Hellman J, Myatra SN, Ostermann M, Prescott HC, Talmor D, Antonelli M, Pontes Azevedo LC, Bauer SR, Kissoon N, Loeches IM, Nunnally M, Tissieres P, Vieillard-Baron A, Coopersmith CM. Surviving Sepsis Campaign Research Priorities 2023. Crit Care Med 2024; 52:268-296. [PMID: 38240508 DOI: 10.1097/ccm.0000000000006135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
OBJECTIVES To identify research priorities in the management, epidemiology, outcome, and pathophysiology of sepsis and septic shock. DESIGN Shortly after publication of the most recent Surviving Sepsis Campaign Guidelines, the Surviving Sepsis Research Committee, a multiprofessional group of 16 international experts representing the European Society of Intensive Care Medicine and the Society of Critical Care Medicine, convened virtually and iteratively developed the article and recommendations, which represents an update from the 2018 Surviving Sepsis Campaign Research Priorities. METHODS Each task force member submitted five research questions on any sepsis-related subject. Committee members then independently ranked their top three priorities from the list generated. The highest rated clinical and basic science questions were developed into the current article. RESULTS A total of 81 questions were submitted. After merging similar questions, there were 34 clinical and ten basic science research questions submitted for voting. The five top clinical priorities were as follows: 1) what is the best strategy for screening and identification of patients with sepsis, and can predictive modeling assist in real-time recognition of sepsis? 2) what causes organ injury and dysfunction in sepsis, how should it be defined, and how can it be detected? 3) how should fluid resuscitation be individualized initially and beyond? 4) what is the best vasopressor approach for treating the different phases of septic shock? and 5) can a personalized/precision medicine approach identify optimal therapies to improve patient outcomes? The five top basic science priorities were as follows: 1) How can we improve animal models so that they more closely resemble sepsis in humans? 2) What outcome variables maximize correlations between human sepsis and animal models and are therefore most appropriate to use in both? 3) How does sepsis affect the brain, and how do sepsis-induced brain alterations contribute to organ dysfunction? How does sepsis affect interactions between neural, endocrine, and immune systems? 4) How does the microbiome affect sepsis pathobiology? 5) How do genetics and epigenetics influence the development of sepsis, the course of sepsis and the response to treatments for sepsis? CONCLUSIONS Knowledge advances in multiple clinical domains have been incorporated in progressive iterations of the Surviving Sepsis Campaign guidelines, allowing for evidence-based recommendations for short- and long-term management of sepsis. However, the strength of existing evidence is modest with significant knowledge gaps and mortality from sepsis remains high. The priorities identified represent a roadmap for research in sepsis and septic shock.
Collapse
Affiliation(s)
- Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Clifford S Deutschman
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, NY
- Sepsis Research Lab, the Feinstein Institutes for Medical Research, Manhasset, NY
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
| | - Sheila Nainan Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Marlies Ostermann
- Department of Critical Care, King's College London, Guy's & St Thomas' Hospital, London, United Kingdom
| | - Hallie C Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Daniel Talmor
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Massimo Antonelli
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Seth R Bauer
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH
| | - Niranjan Kissoon
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Ignacio-Martin Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, Leinster, Dublin, Ireland
| | | | - Pierre Tissieres
- Pediatric Intensive Care, Neonatal Medicine and Pediatric Emergency, AP-HP Paris Saclay University, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Antoine Vieillard-Baron
- Service de Medecine Intensive Reanimation, Hopital Ambroise Pare, Universite Paris-Saclay, Le Kremlin-Bicêtre, France
| | | |
Collapse
|
7
|
He B, Wang X, Shi L, Cheng H, Zhao L. Meta-analysis of initial natriuretic peptides in the setting of sepsis-induced myocardial dysfunction. Biomark Med 2024; 18:145-155. [PMID: 38380989 DOI: 10.2217/bmm-2023-0605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Aim: To investigate the association of initial brain natriuretic peptide (BNP) and N-terminal pro-BNP (NT-proBNP) with the detection of sepsis-induced myocardial dysfunction (SIMD) in the setting of Sepsis 3.0. Methods: Three databases were searched to analyze initial BNP and NT-proBNP levels between SIMD and non-SIMD groups. Results: Eighteen studies were included, most of which defined SIMD based on echocardiography. The SIMD group exhibited higher initial BNP and NT-proBNP levels in blood. NT-proBNP higher than a certain cutoff value (>3000 pg/ml) was an independent risk factor for SIMD and its accuracy for SIMD diagnosis was moderate (pooled area under the curve: 0.81). Conclusion: Initial blood BNP and NT-proBNP levels are useful to assist in the detection of SIMD and further studies are warranted to determine the SIMD definition.
Collapse
Affiliation(s)
- Boyong He
- Emergency Department, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Xin Wang
- Emergency Department, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Liguo Shi
- Emergency Department, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Hongbin Cheng
- Emergency Department, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Luyi Zhao
- Emergency Department, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| |
Collapse
|
8
|
Magnan C, Lancry T, Salipante F, Trusson R, Dunyach-Remy C, Roger C, Lefrant JY, Massanet P, Lavigne JP. Role of gut microbiota and bacterial translocation in acute intestinal injury and mortality in patients admitted in ICU for septic shock. Front Cell Infect Microbiol 2023; 13:1330900. [PMID: 38179421 PMCID: PMC10765587 DOI: 10.3389/fcimb.2023.1330900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Sepsis is a life-threatening organ dysfunction with high mortality rate. The gut origin hypothesis of multiple organ dysfunction syndrome relates to loss of gut barrier function and the ensuing bacterial translocation. The aim of this study was to describe the evolution of gut microbiota in a cohort of septic shock patients over seven days and the potential link between gut microbiota and bacterial translocation. Methods Sixty consecutive adult patients hospitalized for septic shock in intensive care units (ICU) were prospectively enrolled. Non-inclusion criteria included patients with recent or scheduled digestive surgery, having taken laxatives, pre- or probiotic in the previous seven days, a progressive digestive neoplasia, digestive lymphoma, chronic inflammatory bowel disease, moribund patient, and pregnant and lactating patients. The primary objective was to evaluate the evolution of bacterial diversity and richness of gut microbiota during seven days in septic shock. Epidemiological, clinical and biological data were gathered over seven days. Gut microbiota was analyzed through a metagenomic approach. 100 healthy controls were selected among healthy blood donors for reference basal 16S rDNA values. Results Significantly lower bacterial diversity and richness was observed in gut microbiota of patients at Day 7 compared with Day 0 (p<0.01). SOFA score at Day 0, Acute Gastrointestinal Injury (AGI) local grade, septic shock origin and bacterial translocation had an impact on alpha diversity. A large increase in Enterococcus genus was observed at Day 7 with a decrease in Enterobacterales, Clostridiales, Bifidobacterium and other butyrate-producing bacteria. Discussion This study shows the importance of bacterial translocation during AGI in septic shock patients. This bacterial translocation decreases during hospitalization in ICUs in parallel to the decrease of microbiota diversity. This work highlights the role of gut microbiota and bacterial translocation during septic shock.
Collapse
Affiliation(s)
- Chloé Magnan
- Bacterial Virulence and Chronic Infection (VBIC), INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, Platform MICRO&BIO, University Hospital Center (CHU) Nîmes, Nîmes, France
| | - Thomas Lancry
- UR-UM103 UMAGINE, Univ Montpellier, Division of Anesthesia Critical Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| | - Florian Salipante
- Department of Biostastistics, Epidemiology, Public Health and Innovation in Methodology, Univ Montpellier, CHU Nîmes, Nîmes, France
| | - Rémi Trusson
- UR-UM103 UMAGINE, Univ Montpellier, Division of Anesthesia Critical Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| | - Catherine Dunyach-Remy
- Bacterial Virulence and Chronic Infection (VBIC), INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, Platform MICRO&BIO, University Hospital Center (CHU) Nîmes, Nîmes, France
| | - Claire Roger
- UR-UM103 UMAGINE, Univ Montpellier, Division of Anesthesia Critical Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| | - Jean-Yves Lefrant
- UR-UM103 UMAGINE, Univ Montpellier, Division of Anesthesia Critical Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| | - Pablo Massanet
- UR-UM103 UMAGINE, Univ Montpellier, Division of Anesthesia Critical Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| | - Jean-Philippe Lavigne
- Bacterial Virulence and Chronic Infection (VBIC), INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, Platform MICRO&BIO, University Hospital Center (CHU) Nîmes, Nîmes, France
| |
Collapse
|
9
|
Hasegawa D, Ishisaka Y, Maeda T, Prasitlumkum N, Nishida K, Dugar S, Sato R. Prevalence and Prognosis of Sepsis-Induced Cardiomyopathy: A Systematic Review and Meta-Analysis. J Intensive Care Med 2023; 38:797-808. [PMID: 37272081 DOI: 10.1177/08850666231180526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Purpose: The prevalence and its impact on mortality of sepsis-induced cardiomyopathy (SICM) remain controversial. In this systematic review and meta-analysis, we investigated the prevalence and prognosis of SICM. Materials and Methods: We searched MEDLINE, Cochrane Central Register of Controlled Trials, and Embase. Titles and abstracts were evaluated based on the following criteria: (1) published in English, (2) randomized controlled trials, cohort studies, or cross-sectional studies, (3) ≥ 18 years with sepsis, (4) reporting the prevalence and/or comparison of short-term mortality between those with and without SICM, defined as the new-onset reduction in left ventricular ejection fraction (LVEF) within 72 h on admission or from the diagnosis of sepsis. The random-effect model was used for all analyses. This meta-analysis was registered at PROSPERO (CDR42022332896). Results: Sixteen studies reported the prevalence of SICM and the pooled prevalence of SICM was 20% (95% confidence interval [CI], 16-25%; I2 = 89.9%, P < 0.01). Eleven studies reported short-term mortality and SICM was associated with significantly higher short-term mortality (The pooled odds ratio: 2.30, 95% CI, 1.43-3.69; I2 = 0%, P = 0.001). Conclusion: The prevalence of SICM was 20% in patients with sepsis, and the occurrence of SICM was associated with significantly higher short-term mortality.
Collapse
Affiliation(s)
- Daisuke Hasegawa
- Department of Internal Medicine, Mount Sinai Beth Israel, New York, NY, USA
| | - Yoshiko Ishisaka
- Department of Internal Medicine, Mount Sinai Beth Israel, New York, NY, USA
| | - Tetsuro Maeda
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Narut Prasitlumkum
- Department of Cardiology, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Kazuki Nishida
- Department of Biostatistics, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Siddharth Dugar
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Ryota Sato
- Department of Critical Care Medicine, The Queen's Medical Center, Honolulu, HI, USA
| |
Collapse
|
10
|
Chen JH, Zeng LY, Zhao YF, Tang HX, Lei H, Wan YF, Deng YQ, Liu KX. Causal effects of gut microbiota on sepsis: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1167416. [PMID: 37234519 PMCID: PMC10206031 DOI: 10.3389/fmicb.2023.1167416] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Background Recent studies had provided evidence that the gut microbiota is associated with sepsis. However, the potential causal relationship remained unclear. Methods The present study aimed to explore the causal effects between gut microbiota and sepsis by performing Mendelian randomization (MR) analysis utilizing publicly accessible genome-wide association study (GWAS) summary-level data. Gut microbiota GWAS (N = 18,340) were obtained from the MiBioGen study and GWAS-summary-level data for sepsis were gained from the UK Biobank (sepsis, 10,154 cases; 452,764 controls). Two strategies were used to select genetic variants, i.e., single nucleotide polymorphisms (SNPs) below the locus-wide significance level (1 × 10-5) and the genome-wide statistical significance threshold (5 × 10-8) were chosen as instrumental variables (IVs). The inverse variance weighted (IVW) was used as the primary method for MR study, supplemented by a series of other methods. Additionally, a set of sensitivity analysis methods, including the MR-Egger intercept test, Mendelian randomized polymorphism residual and outlier (MR-PRESSO) test, Cochran's Q test, and leave-one-out test, were carried out to assess the robustness of our findings. Results Our study suggested that increased abundance of Deltaproteobacteria, Desulfovibrionales, Catenibacterium, and Hungatella were negatively associated with sepsis risk, while Clostridiaceae1, Alloprevotella, LachnospiraceaeND3007group, and Terrisporobacter were positively correlated with the risk of sepsis. Sensitivity analysis revealed no evidence of heterogeneity and pleiotropy. Conclusion This study firstly found suggestive evidence of beneficial or detrimental causal associations of gut microbiota on sepsis risk by applying MR approach, which may provide valuable insights into the pathogenesis of microbiota-mediated sepsis and strategies for sepsis prevention and treatment.
Collapse
Affiliation(s)
- Jie-Hai Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li-Ying Zeng
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Feng Zhao
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Xuan Tang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hang Lei
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu-Fei Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yong-Qiang Deng
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Chancharoenthana W, Kamolratanakul S, Schultz MJ, Leelahavanichkul A. The leaky gut and the gut microbiome in sepsis - targets in research and treatment. Clin Sci (Lond) 2023; 137:645-662. [PMID: 37083032 PMCID: PMC10133873 DOI: 10.1042/cs20220777] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/25/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
Both a leaky gut (a barrier defect of the intestinal surface) and gut dysbiosis (a change in the intestinal microbial population) are intrinsic to sepsis. While sepsis itself can cause dysbiosis, dysbiosis can worsen sepsis. The leaky gut syndrome refers to a status with which there is an increased intestinal permeability allowing the translocation of microbial molecules from the gut into the blood circulation. It is not just a symptom of gastrointestinal involvement, but also an underlying cause that develops independently, and its presence could be recognized by the detection, in blood, of lipopolysaccharides and (1→3)-β-D-glucan (major components of gut microbiota). Gut-dysbiosis is the consequence of a reduction in some bacterial species in the gut microbiome, as a consequence of intestinal mucosal immunity defect, caused by intestinal hypoperfusion, immune cell apoptosis, and a variety of enteric neuro-humoral-immunity responses. A reduction in bacteria that produce short-chain fatty acids could change the intestinal barriers, leading to the translocation of pathogen molecules, into the circulation where it causes systemic inflammation. Even gut fungi might be increased in human patients with sepsis, even though this has not been consistently observed in murine models of sepsis, probably because of the longer duration of sepsis and also antibiotic use in patients. The gut virobiome that partly consists of bacteriophages is also detectable in gut contents that might be different between sepsis and normal hosts. These alterations of gut dysbiosis altogether could be an interesting target for sepsis adjuvant therapies, e.g., by faecal transplantation or probiotic therapy. Here, current information on leaky gut and gut dysbiosis along with the potential biomarkers, new treatment strategies, and future research topics are mentioned.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Marcus J Schultz
- Department of Intensive Care and Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Elfiky SA, Mahmoud Ahmed S, Elmenshawy AM, Sultan GM, Asser SL. Study of the gut microbiome as a novel target for prevention of hospital-associated infections in intensive care unit patients. Acute Crit Care 2023; 38:76-85. [PMID: 36935537 PMCID: PMC10030239 DOI: 10.4266/acc.2022.01116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/23/2022] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Hospital-acquired infections (HAIs) are increasing due to the spread of multi-drugresistant organisms. Gut dysbiosis in an intensive care unit (ICU) patients at admission showed an altered abundance of some bacterial genera associated with the occurrence of HAIs and mortality. In the present study, we investigated the pattern of the gut microbiome in ICU patients at admission to correlate it with the development of HAIs during ICU stay. METHODS Twenty patients admitted to an ICU with a cross-matched control group of 30 healthy subjects of matched age and sex. Quantitative SYBR green real-time polymerase chain reaction was done for the identification and quantitation of selected bacteria. RESULTS Out of those twenty patients, 35% developed ventilator-associated pneumonia during their ICU stay. Gut microbiome analysis showed a significant decrease in Firmicutes and Firmicutes to Bacteroidetes ratio in ICU patients in comparison to the control and in patients who developed HAIs in comparison to the control group and patients who did not develop HAIs. There was a statistically significant increase in Bacteroides in comparison to the control group. There was a statistically significant decrease in Bifidobacterium and Faecalibacterium prausnitzii and an increase in Lactobacilli in comparison to the control group with a negative correlation between Acute Physiology and Chronic Health Evaluation (APACHE) II score and Firmicutes to Bacteroidetes and Prevotella to Bacteroides ratios. CONCLUSIONS Gut dysbiosis of patients at the time of admission highlights the importance of identification of the microbiome of patients admitted to the ICU as a target for preventing of HAIs.
Collapse
Affiliation(s)
- Suzan Ahmed Elfiky
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria Governorate, Egypt
| | - Shwikar Mahmoud Ahmed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria Governorate, Egypt
| | - Ahmed Mostafa Elmenshawy
- Department of Critical Care Medicine, Faculty of Medicine, Alexandria University, Alexandria Governorate, Egypt
| | - Gehad Mahmoud Sultan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria Governorate, Egypt
| | - Sara Lotfy Asser
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria Governorate, Egypt
| |
Collapse
|
13
|
Chen XS, Cui JR, Meng XL, Wang SH, Wei W, Gao YL, Shou ST, Liu YC, Chai YF. Angiotensin-(1-7) ameliorates sepsis-induced cardiomyopathy by alleviating inflammatory response and mitochondrial damage through the NF-κB and MAPK pathways. J Transl Med 2023; 21:2. [PMID: 36593471 PMCID: PMC9807106 DOI: 10.1186/s12967-022-03842-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND There is no available viable treatment for Sepsis-Induced Cardiomyopathy (SIC), a common sepsis complication with a higher fatality risk. The septic patients showed an abnormal activation of the renin angiotensin (Ang) aldosterone system (RAAS). However, it is not known how the Ang II and Ang-(1-7) affect SIC. METHODS Peripheral plasma was collected from the Healthy Control (HC) and septic patients and Ang II and Ang-(1-7) protein concentrations were measured. The in vitro and in vivo models of SIC were developed using Lipopolysaccharide (LPS) to preliminarily explore the relationship between the SIC state, Ang II, and Ang-(1-7) levels, along with the protective function of exogenous Ang-(1-7) on SIC. RESULTS Peripheral plasma Ang II and the Ang II/Ang-(1-7) levels in SIC-affected patients were elevated compared to the levels in HC and non-SIC patients, however, the HC showed higher Ang-(1-7) levels. Furthermore, peripheral plasma Ang II, Ang II/Ang-(1-7), and Ang-(1-7) levels in SIC patients were significantly correlated with the degree of myocardial injury. Additionally, exogenous Ang-(1-7) can attenuate inflammatory response, reduce oxidative stress, maintain mitochondrial dynamics homeostasis, and alleviate mitochondrial structural and functional damage by inhibiting nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thus alleviating SIC. CONCLUSIONS Plasma Ang-(1-7), Ang II, and Ang II/Ang-(1-7) levels were regarded as significant SIC biomarkers. In SIC, therapeutic targeting of RAAS, for example with Ang-(1-7), may exert protective roles against myocardial damage.
Collapse
Affiliation(s)
- Xin-Sen Chen
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Jing-Rui Cui
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Xiang-Long Meng
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Shu-Hang Wang
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Wei Wei
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yu-Lei Gao
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Song-Tao Shou
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yan-Cun Liu
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yan-Fen Chai
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| |
Collapse
|