1
|
Chen Y, Ma T. Hematologic cancers and infections: how to detect infections in advance and determine the type? Front Cell Infect Microbiol 2024; 14:1476543. [PMID: 39559703 PMCID: PMC11570547 DOI: 10.3389/fcimb.2024.1476543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Infection is one of the leading causes of death in patients with hematologic cancers. Hematologic cancer patients with compromised immune systems are already susceptible to infections, which come on even more rapidly and are difficult to control after they develop neutrophil deficiencies from high-dose chemotherapy. After patients have developed an infection, the determination of the type of infection becomes a priority for clinicians. In this review, we summarize the biomarkers currently used for the prediction of infections in patients with hematologic cancers; procalcitonin, CD64, cytokines, and CD14 et al. can be used to determine bacterial infections, and (1-3)-β-D-glucan and galactomannan et al. can be used as a determination of fungal infections. We have also focused on the use of metagenomic next-generation sequencing in infections in patients with hematologic cancers, which has excellent clinical value in infection prediction and can detect microorganisms that cannot be detected by conventional testing methods such as blood cultures. Of course, we also focused on infection biomarkers that are not yet used in blood cancer patients but could be used as a future research direction, e.g., human neutrophil lipocalin, serum amyloid A, and heparin-binding protein et al. Finally, clinicians need to combine multiple infection biomarkers, the patient's clinical condition, local susceptibility to the type of infection, and many other factors to make a determination of the type of infection.
Collapse
Affiliation(s)
- Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Pires DA, Brandão-Rangel MAR, Silva-Reis A, Olímpio FRS, Aimbire F, Oliveira CR, Mateus-Silva JR, Zamarioli LS, Bachi ALL, Bella YF, Santos JMB, Bincoletto C, Lancha AH, Vieira RP. Vitamin C Inhibits Lipopolysaccharide-Induced Hyperinflammatory State of Chronic Myeloid Leukemia Cells through Purinergic Signaling and Autophagy. Nutrients 2024; 16:383. [PMID: 38337668 PMCID: PMC10857061 DOI: 10.3390/nu16030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the overproduction of white blood cells, leading to symptoms such as fatigue, infections, and other complications. CML patients must take measures to prevent infections to mitigate the exacerbation of cancer cell proliferation and comorbidities. Methods: This study investigated whether vitamin C can suppress the hyperinflammatory activation of K-562 cells induced by lipopolysaccharide (LPS) and whether purinergic signaling (ATP and P2X7 receptor) and autophagy play a role in it. Two different doses of vitamin C (5 µg/mL and 10 µg/mL) were employed, along with the lysosome inhibitor chloroquine (CQ; 100 µM), administered 2 h prior to LPS stimulation (10 ng/mL) for a duration of 22 h in K-562 cells (3 × 105 cells/mL/well). Results: Both doses of vitamin C reduced the release of interleukin-6 (IL-6) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and tumor necrosis factor (TNF) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) induced by LPS. Furthermore, in LPS + CQ-stimulated cells, vitamin C at a concentration of 10 µg/mL inhibited the expression of LC3-II (p < 0.05). Conversely, both doses of vitamin C led to the release of the anti-inflammatory cytokine interleukin-10 (IL-10) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01), while only the 10 µg/mL dose of vitamin C induced the release of Klotho (10 µg/mL, p < 0.01). In addition, both doses of vitamin C reduced the accumulation of ATP (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and decreased the expression of the P2X7 receptor at the mRNA level. Conclusions: Vitamin C inhibits the hyperinflammatory state induced by LPS in K-562 cells, primarily by inhibiting the ATP accumulation, P2X7 receptor expression, and autophagy signaling.
Collapse
Affiliation(s)
- Daniela A. Pires
- Post-Graduation Program in Bioengineering, Universidade Brasil, Rua Carolina Fonseca 235, São Paulo 08230-030, SP, Brazil;
| | - Maysa A. R. Brandão-Rangel
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
| | - Anamei Silva-Reis
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
| | - Fabiana R. S. Olímpio
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 720, Vila Clementino, São Paulo 04039-002, SP, Brazil; (F.R.S.O.); (F.A.)
| | - Flavio Aimbire
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 720, Vila Clementino, São Paulo 04039-002, SP, Brazil; (F.R.S.O.); (F.A.)
| | - Carlos R. Oliveira
- Gap Biotech Laboratory of Biotechnology and Bioinformatics, Rua Comendador Remo Cesaroni 223, São José dos Campos 12243-020, SP, Brazil; (C.R.O.); (J.R.M.-S.)
| | - José R. Mateus-Silva
- Gap Biotech Laboratory of Biotechnology and Bioinformatics, Rua Comendador Remo Cesaroni 223, São José dos Campos 12243-020, SP, Brazil; (C.R.O.); (J.R.M.-S.)
| | - Lucas S. Zamarioli
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), Rua Três de Maio 100, São Paulo 04044-020, SP, Brazil; (L.S.Z.); (C.B.)
| | - André L. L. Bachi
- Postgraduate Program in Health Science, Santo Amaro University, Rua Prof. Enéas de Siqueira Neto 340, São Paulo 04829-300, SP, Brazil;
| | - Yanesko F. Bella
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
| | - Juliana M. B. Santos
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
| | - Claudia Bincoletto
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), Rua Três de Maio 100, São Paulo 04044-020, SP, Brazil; (L.S.Z.); (C.B.)
| | - Antonio Herbert Lancha
- Experimental Surgery (LIM 26), Laboratory of Clinical Investigation, School of Medicine, University of Sao Paulo, Avenida Doutor Arnaldo 455, São Paulo 05508-030, SP, Brazil;
| | - Rodolfo P. Vieira
- Post-Graduation Program in Bioengineering, Universidade Brasil, Rua Carolina Fonseca 235, São Paulo 08230-030, SP, Brazil;
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
- Gap Biotech Laboratory of Biotechnology and Bioinformatics, Rua Comendador Remo Cesaroni 223, São José dos Campos 12243-020, SP, Brazil; (C.R.O.); (J.R.M.-S.)
- Postgraduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Evangelical University of Goiás (Unievangélica), Avenida Universitária Km 3,5, Anápolis 75083-515, GO, Brazil
| |
Collapse
|
3
|
Hu R, Ling X, Yang T, Zhang J, Gu X, Li F, Chen H, Wen Y, Li Z, Zou Y, Du Y. Cytokine levels in patients with non-M3 myeloid leukemia are key indicators of how well the disease responds to chemotherapy. Clin Exp Med 2023; 23:4623-4632. [PMID: 37925379 DOI: 10.1007/s10238-023-01242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant hematological neoplastic disease. Autocrine or paracrine cytokines released by leukemic cells regulate the proliferation of AML cells. It is uncertain whether cytokines can indicate whether patients with AML are in remission with chemotherapy. The goal of this study was to evaluate the levels of Th1/Th2/Th17 cytokines in AML patients before and after chemotherapy to determine whether the cytokine levels could predict disease remission after chemotherapy. It was found that the levels of IL-5, IL-6, IL-8, IL-10, TNF-α, TNF-β, IL-17F, and IL-22 were significantly increased at the time of AML diagnosis in patients who achieved remission after two chemotherapy treatments (P < 0.05). After chemotherapy, the cytokine levels were reduced in patients with remission, while the levels of IL-6 and IL-8 were raised in patients without remission (P < 0.05). A comparison of cytokine levels before and after chemotherapy in patients who achieved remission showed areas under the curve (AUCs) of 0.69 for both IL-6 and IL-8. In addition, a comparison of the remission and non-remission groups after chemotherapy showed an AUC of 0.77 for IL-6. We then calculated the cutoff value using receiver operating characteristic curves. Values of IL-6 < 9.99 and IL-8 < 8.46 at the time of diagnosis were predictive of chemotherapy success and remission, while IL-6 > 14.89 at diagnosis suggested that chemotherapy would not be successful and remission would not be achieved. Multifactorial analysis showed that age, Neu, IL-6, and IL-8 were independent risk factors for AML prognosis, and IL-6 (OR = 5.48, P = 0.0038) was superior to age (OR = 3.36, P = 0.0379), Neu (OR = 0.28, P = 0.0308), IL-8 (OR = 0.0421, P = 0.0421). In conclusion, IL-6 levels were found to be predictive of the likelihood of remission.
Collapse
Affiliation(s)
- Rui Hu
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xiaosui Ling
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
| | - Tonghua Yang
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
| | - Jinping Zhang
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xuezhong Gu
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
| | - Fan Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
| | - Heng Chen
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wen
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
| | - Zengzheng Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.
- Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China.
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China.
| | - Yunlian Zou
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.
- Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China.
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China.
| | - Yunyun Du
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.
- Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China.
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China.
| |
Collapse
|
4
|
Cao Y, Wang D, Mo G, Peng Y, Li Z. Gastric precancerous lesions:occurrence, development factors, and treatment. Front Oncol 2023; 13:1226652. [PMID: 37719006 PMCID: PMC10499614 DOI: 10.3389/fonc.2023.1226652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Patients with gastric precancerous lesions (GPL) have a higher risk of gastric cancer (GC). However, the transformation of GPL into GC is an ongoing process that takes several years. At present, several factors including H.Pylori (Hp), flora imbalance, inflammatory factors, genetic variations, Claudin-4, gastric stem cells, solute carrier family member 26 (SLC26A9), bile reflux, exosomes, and miR-30a plays a considerable role in the transformation of GPL into GC. Moreover, timely intervention in the event of GPL can reduce the risk of GC. In clinical practice, GPL is mainly treated with endoscopy, acid suppression therapy, Hp eradication, a cyclooxygenase-2 inhibitor, aspirin, and diet. Currently, the use of traditional Chinese medicine (TCM) or combination with western medication to remove Hp and the use of TCM to treat GPL are common in Asia, particularly China, and have also demonstrated excellent clinical efficacy. This review thoroughly discussed the combining of TCM and Western therapy for the treatment of precancerous lesions as conditions allow. Consequently, this review also focuses on the causes of the development and progression of GPL, as well as its current treatment. This may help us understand GPL and related treatment.
Collapse
Affiliation(s)
- Yue Cao
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Dongcai Wang
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Guiyun Mo
- Emergency Teaching and Research Department of the First Clinical School of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yinghui Peng
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zengzheng Li
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
5
|
Guan X, Zhang C, Hu P, Yang Z, Zhang J, Zou Y, Wen Y, Li H, Yang T, Zhao R, Li Z. Expression of Th1/2/17 Cytokines in CML with or without Pulmonary Bacterial and Fungal Coinfection. JOURNAL OF ONCOLOGY 2023; 2023:6318548. [PMID: 37114211 PMCID: PMC10129429 DOI: 10.1155/2023/6318548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023]
Abstract
Background Tyrosine kinase inhibitors (TKIs) are the standard therapy for patients with chronic myeloid leukemia (CML). While their use greatly increases patient survival rates and can lead to normal life expectancy, bacterial infections in the lungs continue to play a significant role in determining patient outcomes. Methods In this study, the medical records of 272 CML and 53 healthy adults were analyzed. Information on age, sex, body temperature, procalcitonin (PCT), C-reactive protein (CRP), and cytokine levels were collected from patients. Since the data belonged to a nonstate distribution, we used the Mann-Whitney U test to examine differences between groups. Cut-off values were analyzed by receiver operating characteristic (ROC) curves. Results No significant differences in the Th1/2/17 levels were observed in relation to TKI treatment. Further analysis showed that the levels of the interleukins IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-22, IL-12p70, IL-17A, IL-17F, and IL-1β, interferon (IFN-γ), and tumor necrosis factors (TNF α and β) were higher in patients with pulmonary bacterial infections compared with uninfected patients. IL-6, IL-8, and IL-10 levels in CML patients with bacterial and fungal coinfection were higher than those in patients without infection. The areas under the ROC curves (AUCs) were found to be 0.73 for IL-5, 0.84 for IL-6, 0.82 for IL-8, 0,71 for IL-10, and 0.84 for TNF-α. AUC values were higher for patients with pulmonary bacterial infection, especially IL-6 (AUC = 0.84, cut-off = 13.78 pg/ml) and IL-8 (AUC = 0.82, cut-off = 14.35 pg/ml), which were significantly better than those for CRP (AUC = 0.80, cut-off = 6.18 mg/l), PCT (AUC = 0.71, cut-off = 0.25 ng/ml), and body temperature (AUC = 0.68, cut-off = 36.8°C). In addition, according to the cut-off values, we found that 83.33% of patients with pulmonary bacterial infections had IL-6 ≥ 13.78 pg/ml, while when IL-6, IL-8, and IL-10 levels simultaneously exceeded the cut-off values, the probability of pulmonary bacterial infection was 93.55%. Conclusions TKI treatment did not appear to affect cytokine expression in CML patients. However, CML patients with pulmonary bacterial infection had significantly higher levels of Th1/2/17 cytokines. In particular, abnormally elevated IL-6, IL-8, and IL-10 levels were associated with a pulmonary bacterial infection in patients with CML.
Collapse
Affiliation(s)
- Xin Guan
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Medical Research Center for Hematological Diseases, Kunming, China
| | - Chaoran Zhang
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Medical Research Center for Hematological Diseases, Kunming, China
| | - Peng Hu
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Medical Research Center for Hematological Diseases, Kunming, China
| | - Zefeng Yang
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Medical Research Center for Hematological Diseases, Kunming, China
| | - Jinping Zhang
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Medical Research Center for Hematological Diseases, Kunming, China
| | - Yunlian Zou
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Medical Research Center for Hematological Diseases, Kunming, China
| | - Yan Wen
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Medical Research Center for Hematological Diseases, Kunming, China
| | - Huiyuan Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Medical Research Center for Hematological Diseases, Kunming, China
| | - Tonghua Yang
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Medical Research Center for Hematological Diseases, Kunming, China
| | - Renbin Zhao
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Medical Research Center for Hematological Diseases, Kunming, China
| | - Zengzheng Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Medical Research Center for Hematological Diseases, Kunming, China
| |
Collapse
|
6
|
Cytokines help suggest aplastic anemia with pulmonary bacterial or co-fungal infection. Sci Rep 2022; 12:18373. [PMID: 36319826 PMCID: PMC9626605 DOI: 10.1038/s41598-022-22503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022] Open
Abstract
Although aplastic anemia (AA) does not come under the category of blood malignant diseases, the infection that frequently occurs in this bone marrow failure can make it worse. Pulmonary infection is the most prevalent but limiting clinical diagnosis. To find biomarkers predicting bacterial or bacterial-combined fungal infections in the lungs, we reviewed 287 AA medical records including 151 without any infection, 87 with pure pulmonary bacterial infection, and 49 with bacterial and fungal infection were reviewed. There were substantial changes in IL-17F, IL-17A, IFN-γ, IL-6, IL-8, and IL-10 levels between the non-infected and lung bacterial infection groups (P < 0.05). Further, a significant variation in IL-17A, TNF-β, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-22, and IL-12p70, between the uninfected group and the pulmonary bacterial and fungal infection group (P < 0.05) was observed. The results further revealed significant differences in TNF-β, IL-12p70, IL-6, IL-8, and IL-10 between the pulmonary bacterial infection group and the fungal infection group (P < 0.05). Moreover, by calculating ROC and cut-off values, we determined that IL-6 (AUC = 0.98, Cut-off = 14.28 pg/ml, P = 0.0000) had a significant advantage than other cytokines, body temperature (AUC = 0.61, P = 0.0050), PCT (AUC = 0.57, P = 0.0592), and CRP (AUC = 0.60, P = 0.0147) in the detection of lungs bacterial infections. In addition, IL-6 (AUC = 1.00, Cut-off = 51.50 pg/ml, P = 0.000) and IL-8 (AUC = 0.87, Cut-off = 60.53 pg/ml, P = 0.0000) showed stronger advantages than other cytokines, body temperature (AUC = 0.60, P = 0.0324), PCT (AUC = 0.72, Cut-off = 0.63 ng/ml, P = 0.0000) and CRP (AUC = 0.79, Cut-off = 5.79 mg/l, P = 0.0000) in distinguishing bacteria from fungi. This may suggest that IL-8 may play a role in differentiating co-infected bacteria and fungi. Such advantages are repeated in severe aplastic anemia (SAA) and very severe aplastic anemia (VSAA).In conclusion, aberrant IL-6 elevations in AA patients may predict the likelihood of bacterial lung infection. The concurrent increase of IL-6 and IL-8, on the other hand, should signal bacterial and fungal infections in patients.These findings may help to suggest bacterial or fungal co-infection in patients with AA (Focus on VSAA and SAA).
Collapse
|