1
|
Chen X, Yang J, Qu C, Zhang Q, Sun S, Liu L. Anti- Staphylococcus aureus effects of natural antimicrobial peptides and the underlying mechanisms. Future Microbiol 2024; 19:355-372. [PMID: 38440873 DOI: 10.2217/fmb-2023-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/13/2023] [Indexed: 03/06/2024] Open
Abstract
Staphylococcus aureus can cause localized infections such as abscesses and pneumonia, as well as systemic infections such as bacteremia and sepsis. Especially, methicillin-resistant S. aureus often presents multidrug resistance, which becomes a major clinical challenge. One of the most common reasons for methicillin-resistant S. aureus antibiotic resistance is the presence of biofilms. Natural antimicrobial peptides derived from different species have shown effectiveness in combating S. aureus biofilms. In this review, we summarize the inhibitory activity of antimicrobial peptides against S. aureus planktonic cells and biofilms. We also summarize the possible inhibitory mechanisms, involving cell adhesion inhibition, membrane fracture, biofilm disruption and DNA disruption. We believe this can provide the basis for further research against S. aureus biofilm-associated infections.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jiuli Yang
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Engineering & Technology Research Center for Pediatric Drug Development, Shandong Medicine & Health Key Laboratory of Clinical Pharmacy, Jinan, 250014, People's Republic of China
| | - Chang Qu
- Department of Pharmacy, Beijing Daxing District Hospital of Integrated Chinese & Western Medicine. Beijing, 102600, People's Republic of China
| | - Qian Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Second Provincial General Hospital. Jinan, 250022, People's Republic of China
| | - Lihong Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| |
Collapse
|
2
|
Gomez-Lugo JJ, Casillas-Vega NG, Gomez-Loredo A, Balderas-Renteria I, Zarate X. High-Yield Expression and Purification of Scygonadin, an Antimicrobial Peptide, Using the Small Metal-Binding Protein SmbP. Microorganisms 2024; 12:278. [PMID: 38399682 PMCID: PMC10893511 DOI: 10.3390/microorganisms12020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: Producing active antimicrobial peptides with disulfide bonds in bacterial strains is challenging. The cytoplasm of Escherichia coli has a reducing environment, which is not favorable to the formation of disulfide bonds. Additionally, E. coli may express proteins as insoluble aggregates known as inclusion bodies and have proteolytic systems that can degrade recombinant peptides. Using E. coli strains like SHuffle and tagging the peptides with fusion proteins is a common strategy to overcome these difficulties. Still, the larger size of carrier proteins can affect the final yield of recombinant peptides. Therefore, a small fusion protein that can be purified using affinity chromatography may be an ideal strategy for producing antimicrobial peptides in E. coli. (2) Methods: In this study, we investigated the use of the small metal-binding protein SmbP as a fusion partner for expressing and purifying the antimicrobial peptide scygonadin in E. coli. Two constructs were designed: a monomer and a tandem repeat; both were tagged with SmbP at the N-terminus. The constructs were expressed in E. coli SHuffle T7 and purified using immobilized metal-affinity chromatography. Finally, their antimicrobial activity was determined against Staphylococcus aureus. (3) Results: SmbP is a remarkable fusion partner for purifying both scygonadin constructs, yielding around 20 mg for the monomer and 30 mg for the tandem repeat per 1 mL of IMAC column, reaching 95% purity. Both protein constructs demonstrated antimicrobial activity against S. aureus at MICs of 4 μM and 40 μM, respectively. (4) Conclusions: This study demonstrates the potential of SmbP for producing active peptides for therapeutic applications. The two scygonadin constructs in this work showed promising antimicrobial activity against S. aureus, suggesting they could be potential candidates for developing new antimicrobial drugs.
Collapse
Affiliation(s)
- Jessica J. Gomez-Lugo
- Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Avenida Universidad s/n, Ciudad Universitaria, San Nicolas de los Garza 66455, Mexico; (J.J.G.-L.); (A.G.-L.); (I.B.-R.)
| | - Nestor G. Casillas-Vega
- Departamento de Patologia Clinica, Hospital Universitario Dr. Jose Eleuterio Gonzalez, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico;
| | - Alma Gomez-Loredo
- Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Avenida Universidad s/n, Ciudad Universitaria, San Nicolas de los Garza 66455, Mexico; (J.J.G.-L.); (A.G.-L.); (I.B.-R.)
- Centro de Investigacion en Biotecnologia y Nanotecnologia, Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Parque de Investigacion e Innovacion Tecnologica, Km 10 Autopista al Aeropuerto Mariano Escobedo, Apodaca 66629, Mexico
| | - Isaias Balderas-Renteria
- Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Avenida Universidad s/n, Ciudad Universitaria, San Nicolas de los Garza 66455, Mexico; (J.J.G.-L.); (A.G.-L.); (I.B.-R.)
| | - Xristo Zarate
- Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Avenida Universidad s/n, Ciudad Universitaria, San Nicolas de los Garza 66455, Mexico; (J.J.G.-L.); (A.G.-L.); (I.B.-R.)
| |
Collapse
|
3
|
Fu Q, Cao D, Sun J, Liu X, Li H, Shu C, Liu R. Prediction and bioactivity of small-molecule antimicrobial peptides from Protaetia brevitarsis Lewis larvae. Front Microbiol 2023; 14:1124672. [PMID: 37007486 PMCID: PMC10060639 DOI: 10.3389/fmicb.2023.1124672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Antimicrobial peptides (AMPs) are widely recognized as promising natural antimicrobial agents. Insects, as the group of animals with the largest population, have great potential as a source of AMPs. Thus, it is worthwhile to investigate potential novel AMPs from Protaetia brevitarsis Lewis larvae, which is a saprophagous pest prevalent in China. In this study, comparing the whole-genome sequence of Protaetia brevitarsis Lewis larvae with the Antimicrobial Peptide Database (APD3) led to the identification of nine peptide templates that were potentially AMPs. Next, based on the peptide templates, 16 truncated sequences were predicted to the AMPs by bioinformatics software and then underwent structural and physicochemical property analysis. Thereafter, candidate small-molecule AMPs were artificially synthesized and their minimal inhibitory concentration (MIC) values were assessed. A candidate peptide, designated FD10, exhibited strong antimicrobial activity against both bacteria and fungi comprising Escherichia coli (MIC: 8 μg/mL), Pseudomonas aeruginosa (MIC: 8 μg/mL), Bacillus thuringiensis (MIC: 8 μg/mL), Staphylococcus aureus (MIC: 16 μg/mL), and Candida albicans (MIC: 16 μg/mL). Additionally, two other candidate peptides, designated FD12 and FD15, exhibited antimicrobial activity against both E. coli (MIC: both 32 μg/mL) and S. aureus (MIC: both 16 μg/mL). Moreover, FD10, FD12, and FD15 killed almost all E. coli and S. aureus cells within 1 h, and the hemolytic effect of FD10 (0.31%) and FD12 (0.40%) was lower than that of ampicillin (0.52%). These findings indicate that FD12, FD15, and especially FD10 are promising AMPs for therapeutic application. This study promoted the development of antibacterial drugs and provided a theoretical basis for promoting the practical application of antimicrobial peptides in the Protaetia brevitarsis Lewis larvae.
Collapse
Affiliation(s)
- Qian Fu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Dengtian Cao
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Jing Sun
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Xinbo Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Haitao Li
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Changlong Shu,
| | - Rongmei Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- Rongmei Liu,
| |
Collapse
|