1
|
Xu Y, Huang S, Zhou S, Wang X, Wei M, Chen X, Zong R, Lin X, Li S, Liu Z, Chen Q. Iron Chelator Deferiprone Restores Iron Homeostasis and Inhibits Retinal Neovascularization in Experimental Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:5. [PMID: 39093298 PMCID: PMC11305424 DOI: 10.1167/iovs.65.10.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Purpose Retinal neovascularization is a significant feature of advanced age-related macular degeneration (AMD) and a major cause of blindness in patients with AMD. However, the underlying mechanism of this pathological neovascularization remains unknown. Iron metabolism has been implicated in various biological processes. This study was conducted to investigate the effects of iron metabolism on retinal neovascularization in neovascular AMD (nAMD). Methods C57BL/6J and very low-density lipoprotein receptor (VLDLR) knockout (Vldlr-/-) mice, a murine model of nAMD, were used in this study. Bulk-RNA sequencing was used to identify differentially expressed genes. Western blot analysis was performed to test the expression of proteins. Iron chelator deferiprone (DFP) was administrated to the mice by oral gavage. Fundus fluorescein angiography was used to evaluate retinal vascular leakage. Immunofluorescence staining was used to detect macrophages and iron-related proteins. Results RNA sequencing (RNA-seq) results showed altered transferrin expression in the retina and RPE of Vldlr-/- mice. Disrupted iron homeostasis was observed in the retina and RPE of Vldlr-/- mice. DFP mitigated iron overload and significantly reduced retinal neovascularization and vascular leakage. In addition, DFP suppressed the inflammation in Vldlr-/- retinas. The reduced signals of macrophages were observed at sites of neovascularization in the retina and RPE of Vldlr-/- mice after DFP treatment. Further, the IL-6/JAK2/STAT3 signaling pathway was activated in the retina and RPE of Vldlr-/- mice and reversed by DFP treatment. Conclusions Disrupted iron metabolism may contribute to retinal neovascularization in nAMD. Restoring iron homeostasis by DFP could be a potential therapeutic approach for nAMD.
Collapse
Affiliation(s)
- Yuan Xu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shiya Huang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shengmei Zhou
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xin Wang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mingyan Wei
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaodong Chen
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Rongrong Zong
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiang Lin
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shiying Li
- Department of Ophthalmology, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qian Chen
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Xu H, Luo Y, Li Q, Zhu H. Acupuncture influences multiple diseases by regulating gut microbiota. Front Cell Infect Microbiol 2024; 14:1371543. [PMID: 39040602 PMCID: PMC11260648 DOI: 10.3389/fcimb.2024.1371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Acupuncture, an important green and side effect-free therapy in traditional Chinese medicine, is widely use both domestically and internationally. Acupuncture can interact with the gut microbiota and influence various diseases, including metabolic diseases, gastrointestinal diseases, mental disorders, nervous system diseases, and other diseases. This review presents a thorough analysis of these interactions and their impacts and examines the alterations in the gut microbiota and the potential clinical outcomes following acupuncture intervention to establish a basis for the future utilization of acupuncture in clinical treatments.
Collapse
Affiliation(s)
- Huimin Xu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiaoqi Li
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Wang J, Song W, Zhang Y, Wang J, Wang Y, Song J, Zhou Y. Electroacupuncture Alleviates Pain by Suppressing P2Y12R-Dependent Microglial Activation in Monoarthritic Rats. Neurochem Res 2024; 49:1268-1277. [PMID: 38337134 DOI: 10.1007/s11064-024-04114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/13/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Electroacupuncture (EA) effectively improves arthritis-induced hyperalgesia and allodynia by repressing spinal microglial activation, which plays a crucial role in pain hypersensitivity following tissue inflammation. However, the mechanism by which EA suppresses spinal microglial activation in monoarthritis (MA) remains unclear. In the present study, a rat model of MA was established through unilateral ankle intra-articular injection of complete Freund's adjuvant (CFA). The relationship among P2Y12 receptor (P2Y12R) expression, spinal microglial activation, and EA analgesia was investigated using quantitative real-time PCR (qRT‒PCR), western blotting, immunofluorescence (IF), and behavioral testing. The results found that EA treatment at the ipsilateral "Huantiao" (GB30) and "Yanglingquan" (GB34) acupoints markedly attenuated pain and spinal microglia M1 polarization in MA rats. In particular, P2Y12R expression was significantly increased at the mRNA and protein levels in the spinal dorsal horn in MA rats, whereas EA treatment effectively repressed the MA-induced upregulation of P2Y12R. IF analysis further revealed that most P2Y12R was expressed in microglia in the spinal dorsal horn. Pharmacological inhibition of P2Y12R by its antagonist (AR-C69931MX) decreased MA-induced spinal microglial activation and subsequent proinflammatory cytokine production. Consequently, AR-C69931MX significantly intensified the anti-pain hypersensitive function of EA in MA rats. Taken together, these results demonstrate that EA alleviates MA-induced pain by suppressing P2Y12R-dependent microglial activation.
Collapse
Affiliation(s)
- Jing Wang
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China
| | - Wei Song
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China
| | - Yujiao Zhang
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China
| | - Jian Wang
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China
| | - Yongqiang Wang
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China
| | - Jiangang Song
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China.
| | - Yalan Zhou
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China.
| |
Collapse
|
4
|
Hu Y, Wang Y, Yang F, Liu D, Lu G, Li S, Wei Z, Shen X, Jiang Z, Zhao Y, Pang Q, Song B, Shi Z, Shafique S, Zhou K, Chen X, Su W, Jian J, Tang K, Liu T, Zhu Y. Flexible Organic Photovoltaic-Powered Hydrogel Bioelectronic Dressing With Biomimetic Electrical Stimulation for Healing Infected Diabetic Wounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307746. [PMID: 38145346 PMCID: PMC10933690 DOI: 10.1002/advs.202307746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/28/2023] [Indexed: 12/26/2023]
Abstract
Electrical stimulation (ES) is proposed as a therapeutic solution for managing chronic wounds. However, its widespread clinical adoption is limited by the requirement of additional extracorporeal devices to power ES-based wound dressings. In this study, a novel sandwich-structured photovoltaic microcurrent hydrogel dressing (PMH dressing) is designed for treating diabetic wounds. This innovative dressing comprises flexible organic photovoltaic (OPV) cells, a flexible micro-electro-mechanical systems (MEMS) electrode, and a multifunctional hydrogel serving as an electrode-tissue interface. The PMH dressing is engineered to administer ES, mimicking the physiological injury current occurring naturally in wounds when exposed to light; thus, facilitating wound healing. In vitro experiments are performed to validate the PMH dressing's exceptional biocompatibility and robust antibacterial properties. In vivo experiments and proteomic analysis reveal that the proposed PMH dressing significantly accelerates the healing of infected diabetic wounds by enhancing extracellular matrix regeneration, eliminating bacteria, regulating inflammatory responses, and modulating vascular functions. Therefore, the PMH dressing is a potent, versatile, and effective solution for diabetic wound care, paving the way for advancements in wireless ES wound dressings.
Collapse
Affiliation(s)
- Yi‐Wei Hu
- Health Science CenterNingbo UniversityNingbo315211P. R. China
- Orthopaedic Oncology Center of Changzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Yu‐Heng Wang
- Faculty of Electrical Engineering and Computer ScienceNingbo UniversityNingbo315211P. R. China
- State Key Laboratory of Electrical Insulation and Power EquipmentXi'an Jiaotong UniversityXi'an710049P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Fang Yang
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| | - Ding‐Xin Liu
- State Key Laboratory of Electrical Insulation and Power EquipmentXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Guang‐Hao Lu
- State Key Laboratory of Electrical Insulation and Power EquipmentXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Sheng‐Tao Li
- State Key Laboratory of Electrical Insulation and Power EquipmentXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Zhi‐Xiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xiang Shen
- The Research Institute of Advanced TechnologiesNingbo UniversityNingbo315211P. R. China
| | - Zhuang‐De Jiang
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yi‐Fan Zhao
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Qian Pang
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| | - Bai‐Yang Song
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| | - Ze‐Wen Shi
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| | - Shareen Shafique
- School of Physical Science and TechnologyNingbo UniversityNingbo315211P. R. China
| | - Kun Zhou
- Shenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong Kong ShenzhenShenzhen518172P. R. China
| | - Xiao‐Lian Chen
- Printable Electronics Research Center & Nano‐Device and Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsNano Chinese Academy of SciencesSuzhou215123P. R. China
| | - Wen‐Ming Su
- Printable Electronics Research Center & Nano‐Device and Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsNano Chinese Academy of SciencesSuzhou215123P. R. China
| | - Jia‐Wen Jian
- Faculty of Electrical Engineering and Computer ScienceNingbo UniversityNingbo315211P. R. China
| | - Ke‐Qi Tang
- Institute of Mass SpectrometrySchool of Material Science and Chemical EngineeringNingbo UniversityNingbo315211P. R. China
| | - Tie‐Long Liu
- Orthopaedic Oncology Center of Changzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Ya‐Bin Zhu
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| |
Collapse
|
5
|
Kim MJ, Lee S, Kim SN. Effects of acupuncture on gastrointestinal diseases and its underlying mechanism: a literature review of animal studies. Front Med (Lausanne) 2023; 10:1167356. [PMID: 37351066 PMCID: PMC10282137 DOI: 10.3389/fmed.2023.1167356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Acupuncture is a non-pharmacological traditional Chinese medical technique that has been used for various types of gastrointestinal (GI) diseases in Eastern medicine. However, the specific mechanisms underlying acupuncture treatment in the GI tract have not yet been elucidated. In this study, we searched the electronic databases PUBMED, EMBASE, and MEDLINE and identified 30 eligible studies that were summarized in this review. This review demonstrates that treatments, including both manual and electroacupuncture, have therapeutic mechanisms in diverse GI diseases. The underlying mechanisms are broadly divided into the following: changes in gene expression in the gastric mucosa or nuclei of the solitary tract, metabolic change induction, regulation of anti-inflammatory substances, vagal activity increase, change in functional connectivity between brain regions, and control of the number of neurons related to GI diseases. Although this study is limited in that it does not represent all types of GI diseases with different acupuncture methods, this study identified acupuncture as effective for GI diseases through various biological mechanisms. We hope that our study will reveal various mechanisms of acupuncture in GI diseases and play an important role in the therapy and treatment of GI diseases, thus advancing the field of study.
Collapse
|
6
|
Zhang Q, Deng P, Chen S, Xu H, Zhang Y, Chen H, Zhang J, Sun H. Electroacupuncture and human iPSC-derived small extracellular vesicles regulate the gut microbiota in ischemic stroke via the brain-gut axis. Front Immunol 2023; 14:1107559. [PMID: 36742316 PMCID: PMC9895941 DOI: 10.3389/fimmu.2023.1107559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Electroacupuncture (EA) and induced pluripotent stem cell (iPSC)-derived small extracellular vesicles (iPSC-EVs) have substantial beneficial effects on ischemic stroke. However, the detailed mechanisms remain unclear. Here, we explored the mechanisms underlying the regulation of EA and iPSC-EVs in the microbiome-gut-brain axis (MGBA) after ischemic stroke. Ischemic stroke mice (C57BL/6) were subjected to middle cerebral artery occlusion (MCAO) or Sham surgery. EA and iPSC-EVs treatments significantly improved neurological function and neuronal and intestinal tract injury, downregulated the levels of IL-17 expression and upregulated IL-10 levels in brain and colon tissue after cerebral ischemia-reperfusion. EA and iPSC-EVs treatments also modulated the microbiota composition and diversity as well as the differential distribution of species in the intestines of the mice after cerebral ischemia-reperfusion. Our results demonstrated that EA and iPSC-EVs treatments regulated intestinal immunity through MGBA regulation of intestinal microbes, reducing brain and colon damage following cerebral ischemia and positively impacting the outcomes of ischemic stroke. Our findings provide new insights into the application of EA combined with iPSC-EVs as a treatment for ischemic stroke.
Collapse
Affiliation(s)
- Qiongqiong Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Peiying Deng
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Suhui Chen
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Xu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yamin Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Chen
- CAMS Key Laboratory for T-Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China,Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Jianmin Zhang
- CAMS Key Laboratory for T-Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China,Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China,Guidon Pharmaceutics, Inc., Beijing, China,*Correspondence: Jianmin Zhang, ; Hua Sun,
| | - Hua Sun
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Jianmin Zhang, ; Hua Sun,
| |
Collapse
|
7
|
Jiang H, Deng S, Zhang J, Chen J, Li B, Zhu W, Zhang M, Zhang C, Meng Z. Acupuncture treatment for post-stroke depression: Intestinal microbiota and its role. Front Neurosci 2023; 17:1146946. [PMID: 37025378 PMCID: PMC10070763 DOI: 10.3389/fnins.2023.1146946] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Stroke-induced depression is a common complication and an important risk factor for disability. Besides psychiatric symptoms, depressed patients may also exhibit a variety of gastrointestinal symptoms, and even take gastrointestinal symptoms as the primary reason for medical treatment. It is well documented that stress may disrupt the balance of the gut microbiome in patients suffering from post-stroke depression (PSD), and that disruption of the gut microbiome is closely related to the severity of the condition in depressed patients. Therefore, maintaining the balance of intestinal microbiota can be the focus of research on the mechanism of acupuncture in the treatment of PSD. Furthermore, stroke can be effectively treated with acupuncture at all stages and it may act as a special microecological regulator by regulating intestinal microbiota as well. In this article, we reviewed the studies on changing intestinal microbiota after acupuncture treatment and examined the existing problems and development prospects of acupuncture, microbiome, and poststroke depression, in order to provide new ideas for future acupuncture research.
Collapse
Affiliation(s)
- Hailun Jiang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shizhe Deng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jieying Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junjie Chen
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Boxuan Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weiming Zhu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglong Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chao Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Chao Zhang,
| | - Zhihong Meng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Zhihong Meng,
| |
Collapse
|
8
|
Jia S, Lu W, Hang M, Zhang C, Ma Z, Xue K, Lu Y, Zhang S, Guo Y, Zhang J, Zhang X, Wang Y, Zhao H. Study on the effect of acupunture treatment on autonomic nerve dysfunction in convalescent period of stroke based on heart rate variability assessment technique. Medicine (Baltimore) 2022; 101:e32355. [PMID: 36550889 PMCID: PMC9771218 DOI: 10.1097/md.0000000000032355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Stroke patients with autonomic dysfunction are more likely to develop cardiac problems, which have been linked to lower functional outcomes and increased mortality. In this study, heart rate variability (HRV) detection paired with the Clinical Feature Scale will be utilized to elucidate the immediate impact of manual acupuncture on autonomic dysfunction of varying severity in the convalescence stroke phase. This is a randomized, single-blind, controlled clinical trial approach. At a ratio of 1:1, 60 appropriate patients will be randomly randomized into either the experimental or control group. On the basis of symptomatic treatment drugs, the experimental group will additionally undertake acupuncture therapy 3 times a week for 4 weeks, for a total of 12 times. Primary outcomes include 24-hour HRV and 60-minute HRV detection at week 4 compared with baseline. The secondary outcome is the score of clinical feature scale at week 4 compared with the baseline. Adverse events and safety indices will be recorded throughout the experiment. The SPSS V.25.0 statistical program was applied for analysis, and measurement data were expressed as mean ± SD.
Collapse
Affiliation(s)
- Shijing Jia
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Lu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * Correspondence: Wang Lu, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, China (e-mail: )
| | - Minghui Hang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chu Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zilin Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kun Xue
- Shanghai Changning Tianshan Traditional Chinese Medicine Hospital, Shanghai, China
| | - Yunqi Lu
- Shanghai Fifth People’s Hospital, Shanghai, China
| | - Shenghong Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijin Guo
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiabao Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyu Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yimeng Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyin Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Lee S, Lee IS, Chae Y. Similarities between Ashi acupoints and myofascial trigger points: Exploring the relationship between body surface treatment points. Front Neurosci 2022; 16:947884. [PMID: 36408408 PMCID: PMC9671147 DOI: 10.3389/fnins.2022.947884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/12/2022] [Indexed: 06/10/2024] Open
Abstract
Although acupuncture points and myofascial trigger points (TPs) are based in different medical fields, the two points share important attributes. We explored the relationship between acupuncture points and TPs based on their characteristics and the results of previous studies. We outlined the relationship between acupuncture points and TPs by examining their similarities and differences. Among the acupuncture point subgroups, TPs mostly corresponded to Ashi points. Based on the common features of TPs and Ashi points, we suggest that TPs are more closely related to Ashi points than to other acupoints. However, TPs also share some features, such as pain indication and location, with classical acupuncture points (CA) and extra acupuncture points (EA), which makes it difficult to elucidate their relationship with other subgroups. Therefore, we suggest to understand the relationship of CAs, EAs, Ashi points, and TPs. In this report, we concluded that concerning muscular pain symptoms Ashi points and TPs are indistinguishable.
Collapse
Affiliation(s)
- Seoyoung Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea
| | - In-Seon Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea
| | - Younbyoung Chae
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea
| |
Collapse
|