1
|
Davison S, Mascellani Bergo A, Ward Z, Sackett A, Strykova A, Jaimes JD, Travis D, Clayton JB, Murphy HW, Danforth MD, Smith BK, Blekhman R, Fuh T, Niatou Singa FS, Havlik J, Petrzelkova K, Gomez A. Cardiometabolic disease risk in gorillas is associated with altered gut microbial metabolism. NPJ Biofilms Microbiomes 2025; 11:33. [PMID: 39984469 PMCID: PMC11845621 DOI: 10.1038/s41522-025-00664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/03/2025] [Indexed: 02/23/2025] Open
Abstract
Cardiometabolic disease is the leading cause of death in zoo apes; yet its etiology remains unknown. Here, we investigated compositional and functional microbial markers in fecal samples from 57 gorillas across U.S. zoos, 20 of which are diagnosed with cardiovascular disease, in contrast with 17 individuals from European zoos and 19 wild gorillas from Central Africa. Results show that zoo-housed gorillas in the U.S. exhibit the most diverse gut microbiomes and markers of increased protein and carbohydrate fermentation, at the expense of microbial metabolic traits associated with plant cell-wall degradation. Machine learning models identified unique microbial traits in U.S. gorillas with cardiometabolic distress; including reduced metabolism of sulfur-containing amino acids and hexoses, increased abundance of potential enteric pathogens, and low fecal butyrate and propionate production. These findings show that cardiometabolic disease in gorillas is potentially associated with altered gut microbial function, influenced by zoo-specific diets and environments.
Collapse
Affiliation(s)
- Samuel Davison
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Anna Mascellani Bergo
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Zoe Ward
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA
| | - April Sackett
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA
| | - Anna Strykova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - José Diógenes Jaimes
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Dominic Travis
- The Marine Mammal Center, Sausalito, CA, USA
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jonathan B Clayton
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Hayley W Murphy
- HWM and MDD: Great Ape Heart Project, Detroit Zoological Society, Royal Oak, MI, USA
| | - Marietta D Danforth
- HWM and MDD: Great Ape Heart Project, Detroit Zoological Society, Royal Oak, MI, USA
| | | | - Ran Blekhman
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Terence Fuh
- WWF Central African Republic, Bayanga, Central African Republic
| | | | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czech Republic.
| | - Klara Petrzelkova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Brno, Czech Republic.
- Liberec Zoo, Liberec, Czech Republic.
| | - Andres Gomez
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA.
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
2
|
Sinclair J, McLaughlin G, Allan R, Brooks-Warburton J, Lawson C, Goh S, Desai T, Bottoms L. Health Benefits of Montmorency Tart Cherry Juice Supplementation in Adults with Mild to Moderate Ulcerative Colitis; A Placebo Randomized Controlled Trial. Life (Basel) 2025; 15:306. [PMID: 40003718 PMCID: PMC11857002 DOI: 10.3390/life15020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
AIMS Ulcerative colitis (UC) significantly impacts individuals' self-perception, body image, and overall quality of life, while also imposing considerable economic costs. These challenges highlight the necessity for complementary therapeutic strategies with reduced adverse effects to support conventional pharmacological treatments. Among natural interventions, Montmorency tart cherries, noted for their high anthocyanin content have emerged as a natural anti-inflammatory agent for UC. The current trial aimed to investigate the effects of Montmorency tart cherries compared to placebo in patients with mild to moderate UC. MATERIALS AND METHODS Thirty-five patients with UC were randomly assigned to receive either placebo or Montmorency tart cherry juice, of which they drank 60 mL per day for 6 weeks. The primary outcomes and health-related quality of life, measured via the Inflammatory Bowel Disease Quality of Life Questionnaire (IBDQ), and the secondary measures, including other health-related questionnaires, blood biomarkers, and faecal samples, were measured before and after the intervention. Linear mixed-effects models were adopted to contrast the changes from baseline to 6 weeks between trial arms. Effect sizes were calculated using Cohen's d. RESULTS There were significantly greater improvements in the IBDQ (22.61 (95% CI = 5.24 to 39.99) d = 0.90) and simple clinical colitis activity index (-3.98 (95% CI = -6.69 to -1.28) d = -1.01) in the tart cherry trial arm compared to placebo. In addition, reductions in faecal calprotectin levels were significantly greater in the tart cherry trial arm compared to placebo (-136.17 µg/g (95% CI = -258.06 to -4.28) d = -1.14). Loss to follow-up (N = 1) and adverse events (N = 1) were low and compliance was very high in the tart cherry (95.8%) trial arm. CONCLUSIONS Given the profoundly negative effects of UC on health-related quality of life and its fiscal implications for global healthcare systems, this trial indicates that twice-daily tart cherry supplementation can improve IBD-related quality of life as well as the severity of symptoms and therefore may be important in the management of UC.
Collapse
Affiliation(s)
- Jonathan Sinclair
- Research Centre for Applied Sport, Physical Activity and Performance, School of Health Social Work & Sport, University of Central Lancashire, Preston PR1 2HE, UK
| | - Graham McLaughlin
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Robert Allan
- Research Centre for Applied Sport, Physical Activity and Performance, School of Health Social Work & Sport, University of Central Lancashire, Preston PR1 2HE, UK
| | - Johanne Brooks-Warburton
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
- Gastroenterology Department, Lister Hospital, Stevenage SG1 4AB, UK
| | - Charlotte Lawson
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Shan Goh
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Terun Desai
- Division of Surgery & Interventional Science, University College London, London WC1E 6BT, UK
| | - Lindsay Bottoms
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
3
|
Jarmukhanov Z, Mukhanbetzhanov N, Vinogradova E, Kozhakhmetov S, Kushugulova A. Gut metagenomic features of frailty. Front Cell Infect Microbiol 2024; 14:1486579. [PMID: 39654975 PMCID: PMC11625779 DOI: 10.3389/fcimb.2024.1486579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
This study investigates the relationship between frailty severity and gut microbiome characteristics in adults in Kazakhstan. We analyzed 158 participants across four frailty severity (mild to very severe) using metagenomic sequencing of stool samples. Frailty was significantly correlated with age, weight, and functional measures like walking speed and grip strength. Microbial diversity decreased significantly with increasing frailty. Beta diversity analysis revealed distinct clustering patterns based at phylum level. Taxonomically, we observed a significant inverse correlation between Firmicutes abundance and frailty. Classes like Clostridia and Erysipelotrichia decreased with frailty, while Bacteroidia and Actinobacteria increased. At the family level, Oscillospiraceae showed a positive correlation with frailty. Functionally, we identified significant correlations between frailty measures and specific metabolic pathways. The frailty index negatively correlated with pathways involved in cobalamin, arginine and molybdenum cofactor biosynthesis and positively correlated with folate biosynthesis. Physical performance measures strongly correlated with pathways related to nucleotide biosynthesis, and one-carbon metabolism. We propose these identified features may constitute a "frailty-associated metabolic signature" in the gut microbiome. This signature suggests multiple interconnected mechanisms through which the microbiome may influence frailty development, including modulation of inflammation, alterations in energy metabolism, and potential impacts on muscle function through microbial metabolites.
Collapse
Affiliation(s)
| | | | | | | | - Almagul Kushugulova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
4
|
Philips CA, Ahamed R, Oommen TT, Nahaz N, Tharakan A, Rajesh S, Augustine P. Clinical outcomes and associated bacterial and fungal microbiota changes after high dose probiotic therapy for severe alcohol-associated hepatitis: An observational study. Medicine (Baltimore) 2024; 103:e40429. [PMID: 39533632 PMCID: PMC11556976 DOI: 10.1097/md.0000000000040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Alcohol-associated hepatitis (AH) is a critical condition with high mortality rates and is worsened by infections. Organ failure is strongly associated with intestinal dysbiosis. Emerging research suggests that gut microbiota modulation with probiotics can improve AH outcomes. This study investigated the clinical and microbiome effects of high-dose probiotic infusion (HDPI) compared with corticosteroid therapy (CST) and fecal microbiota transplantation (FMT) in severe AH. Patients with biopsy-proven severe-AH were enrolled from March 2019 to June 2020 and matched for age and disease severity. The patients received HDPI (n = 20), FMT (n = 16), or CST (n = 14). HDPI consists of a potent probiotic mix delivered via a nasoduodenal tube for 6 days. The primary outcome was survival at 90-days. Stool samples were subjected to 16S and 18S rRNA sequencing to assess significant bacterial and fungal taxa and their interactions at baseline and post treatment. At 90-days, survival rates were 55%, 64.3%, and 87.5% (HDPI, CST, respectively). HDPI did not beneficially impact bacterial alpha-diversity but significantly altered beta-diversity. Notably, the number of pathogenic bacteria, such as Bilophila and Roseburia increased. Fungal analysis revealed no significant changes in alpha diversity, but significant dissimilarities in beta diversity post-HDPI. New fungal genera such as Basidiomycota and Phragmoplastophyta have emerged, with significant deleterious expansion in fungal communities and damaging modifications between fungal-bacterial interactions. HDPI failed to outperform CST in improving the clinical outcomes of patients with severe AH. While HDPI influenced both bacterial and fungal microbiomes, it also led to the persistence of pathogenic communities. FMT showed superior survival outcomes, highlighting the urgent need for further controlled trials.
Collapse
Affiliation(s)
- Cyriac Abby Philips
- Clinical and Translational Hepatology, The Liver Institute, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
- Department of Clinical Research, Division of Gut Microbiome and the Liver, The Liver Institute, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Rizwan Ahamed
- Gastroenterology and Advanced GI Endoscopy, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Tharun Tom Oommen
- Gastroenterology and Advanced GI Endoscopy, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Nibin Nahaz
- Gastroenterology and Advanced GI Endoscopy, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Ajit Tharakan
- Gastroenterology and Advanced GI Endoscopy, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Sasidharan Rajesh
- Division of Interventional Radiology, Gastroenterology and Hepatology, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Philip Augustine
- Gastroenterology and Advanced GI Endoscopy, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| |
Collapse
|
5
|
Gonzalez-Soltero R, Tabone M, Larrosa M, Bailen M, Bressa C. VDR gene TaqI (rs731236) polymorphism affects gut microbiota diversity and composition in a Caucasian population. Front Nutr 2024; 11:1423472. [PMID: 39328465 PMCID: PMC11425793 DOI: 10.3389/fnut.2024.1423472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Background The VDR gene is identified as a crucial host factor, influencing the gut microbiota. The current research focuses on an observational study that compares gut microbiota composition among individuals with different VDR gene TaqI polymorphisms in a Caucasian Spanish population. This study aims to elucidate the interplay between genetic variations in the VDR gene and the gut microbial composition. Methods 87 healthy participants (57 men, 30 women), aged 18 to 48 years, were examined. Anthropometric measures, body composition, and dietary habits were assessed. VDR gene polymorphism TaqI rs731236 was determined using TaqMan assays. The V3 and V4 regions of the 16S rRNA gene were sequenced to study bacterial composition, which was analyzed using QIIME2, DADA2 plugin, and PICRUSt2. Statistical analyses included tests for normal distribution, alpha/beta diversity, ADONIS, LEfSe, and DESeq2, with established significance thresholds. Results No significant differences in body composition or dietary habits were observed based on VDR genotypes. Dietary intake analysis revealed no variations in energy, macronutrients, or fiber among the different VDR genotypes. Fecal microbiota analysis indicated significant differences in alpha diversity as measured by Faith's Phylogenetic Diversity index. Differential abundance analysis identified taxonomic disparities, notably in the genera Parabacteroides and Butyricimonas. Conclusion Overall, this study suggests potential associations between genetic variations in the VDR gene and the composition and function of gut microbiota.
Collapse
Affiliation(s)
- Rocío Gonzalez-Soltero
- Masmicrobiota Group, Madrid, Spain
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Mariangela Tabone
- Masmicrobiota Group, Madrid, Spain
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Mar Larrosa
- Masmicrobiota Group, Madrid, Spain
- Department of Nutrition and Food Science, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria Bailen
- Masmicrobiota Group, Madrid, Spain
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlo Bressa
- Masmicrobiota Group, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
6
|
Vázquez-Cuesta S, Lozano García N, Rodríguez-Fernández S, Fernández-Avila AI, Bermejo J, Fernández-Avilés F, Muñoz P, Bouza E, Reigadas E. Impact of the Mediterranean Diet on the Gut Microbiome of a Well-Defined Cohort of Healthy Individuals. Nutrients 2024; 16:793. [PMID: 38542704 PMCID: PMC10974552 DOI: 10.3390/nu16060793] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 01/04/2025] Open
Abstract
A comprehensive understanding of gut microbiota in a clearly defined group of healthy individuals is essential when making meaningful comparisons with various diseases. The Mediterranean diet (MD), renowned for its potential health benefits, and the influence of adherence thereto on gut microbiota have become a focus of research. Our aim was to elucidate the impact of adherence to the MD on gut microbiota composition in a well-defined cohort. In this prospective study, healthy volunteers completed a questionnaire to provide demographic data, medical history, and dietary intake. Adherence was evaluated using the Med-DQI. The V4 region of the 16S rRNA gene was sequenced. Analysis of sequencing data and statistical analysis were performed using MOTHUR software and R. The study included 60 patients (51.7% females). Adherence correlated with alpha diversity, and higher values were recorded in good adherers. Good adherers had a higher abundance of Paraprevotella and Bacteroides (p < 0.001). Alpha diversity correlated inversely with fat intake and positively with non-starch polysaccharides (NSPs). Evenness correlated inversely with red meat intake and positively with NSPs. Predicted functional analysis highlighted metabolic pathway differences based on adherence to the MD. In conclusion, our study adds useful information on the relationship between the MD and the gut microbiome.
Collapse
Affiliation(s)
- Silvia Vázquez-Cuesta
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.V.-C.); (N.L.G.); (S.R.-F.); (E.B.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.-A.); (J.B.); (F.F.-A.)
- Biochemistry and Molecular Biology Department, School of Biology, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Nuria Lozano García
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.V.-C.); (N.L.G.); (S.R.-F.); (E.B.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.-A.); (J.B.); (F.F.-A.)
| | - Sara Rodríguez-Fernández
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.V.-C.); (N.L.G.); (S.R.-F.); (E.B.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.-A.); (J.B.); (F.F.-A.)
| | - Ana I. Fernández-Avila
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.-A.); (J.B.); (F.F.-A.)
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Javier Bermejo
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.-A.); (J.B.); (F.F.-A.)
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Francisco Fernández-Avilés
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.-A.); (J.B.); (F.F.-A.)
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.V.-C.); (N.L.G.); (S.R.-F.); (E.B.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.-A.); (J.B.); (F.F.-A.)
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES CB06/06/0058), 28029 Madrid, Spain
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.V.-C.); (N.L.G.); (S.R.-F.); (E.B.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.-A.); (J.B.); (F.F.-A.)
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES CB06/06/0058), 28029 Madrid, Spain
| | - Elena Reigadas
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.V.-C.); (N.L.G.); (S.R.-F.); (E.B.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.-A.); (J.B.); (F.F.-A.)
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
7
|
Yang XT, Wang J, Jiang YH, Zhang L, Du L, Li J, Liu F. Insight into the mechanism of gallstone disease by proteomic and metaproteomic characterization of human bile. Front Microbiol 2023; 14:1276951. [PMID: 38111640 PMCID: PMC10726133 DOI: 10.3389/fmicb.2023.1276951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Cholesterol gallstone disease is a prevalent condition that has a significant economic impact. However, the role of the bile microbiome in its development and the host's responses to it remain poorly understood. Methods In this study, we conducted a comprehensive analysis of microbial and human bile proteins in 40 individuals with either gallstone disease or gallbladder polyps. We employed a combined proteomic and metaproteomic approach, as well as meta-taxonomic analysis, functional pathway enrichment, and Western blot analyses. Results Our metaproteomic analysis, utilizing the lowest common ancestor algorithm, identified 158 microbial taxa in the bile samples. We discovered microbial taxa that may contribute to gallstone formation, including β-glucuronidase-producing bacteria such as Streptococcus, Staphylococcus, and Clostridium, as well as those involved in biofilm formation like Helicobacter, Cyanobacteria, Pseudomonas, Escherichia coli, and Clostridium. Furthermore, we identified 2,749 human proteins and 87 microbial proteins with a protein false discovery rate (FDR) of 1% and at least 2 distinct peptides. Among these proteins, we found microbial proteins crucial to biofilm formation, such as QDR3, ompA, ndk, pstS, nanA, pfIB, and dnaK. Notably, QDR3 showed a gradual upregulation from chronic to acute cholesterol gallstone disease when compared to polyp samples. Additionally, we discovered other microbial proteins that enhance bacterial virulence and gallstone formation by counteracting host oxidative stress, including sodB, katG, rbr, htrA, and ahpC. We also identified microbial proteins like lepA, rtxA, pckA, tuf, and tpiA that are linked to bacterial virulence and potential gallstone formation, with lepA being upregulated in gallstone bile compared to polyp bile. Furthermore, our analysis of the host proteome in gallstone bile revealed enhanced inflammatory molecular profiles, including innate immune molecules against microbial infections. Gallstone bile exhibited overrepresented pathways related to blood coagulation, folate metabolism, and the IL-17 pathway. However, we observed suppressed metabolic activities, particularly catabolic metabolism and transport activities, in gallstone bile compared to polyp bile. Notably, acute cholelithiasis bile demonstrated significantly impaired metabolic activities compared to chronic cholelithiasis bile. Conclusion Our study provides a comprehensive metaproteomic analysis of bile samples related to gallstone disease, offering new insights into the microbiome-host interaction and gallstone formation mechanism.
Collapse
Affiliation(s)
- Xue-Ting Yang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Jie Wang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Ying-Hua Jiang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Lei Zhang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Ling Du
- Key Laboratory of Digestive Cancer Full Cycle Monitoring and Precise Intervention of Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai, China
| | - Jun Li
- Department of Surgery, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng Liu
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Kalnina I, Gudra D, Silamikelis I, Viksne K, Roga A, Skinderskis E, Fridmanis D, Klovins J. Variations in the Relative Abundance of Gut Bacteria Correlate with Lipid Profiles in Healthy Adults. Microorganisms 2023; 11:2656. [PMID: 38004667 PMCID: PMC10673050 DOI: 10.3390/microorganisms11112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The gut microbiome is a versatile system regulating numerous aspects of host metabolism. Among other traits, variations in the composition of gut microbial communities are related to blood lipid patterns and hyperlipidaemia, yet inconsistent association patterns exist. This study aims to assess the relationships between the composition of the gut microbiome and variations in lipid profiles among healthy adults. This study used data and samples from 23 adult participants of a previously conducted dietary intervention study. Circulating lipid measurements and whole-metagenome sequences of the gut microbiome were derived from 180 blood and faecal samples collected from eight visits distributed across an 11-week study. Lipid-related variables explained approximately 4.5% of the variation in gut microbiome compositions, with higher effects observed for total cholesterol and high-density lipoproteins. Species from the genera Odoribacter, Anaerostipes, and Parabacteroides correlated with increased serum lipid levels, whereas probiotic species like Akkermansia muciniphila were more abundant among participants with healthier blood lipid profiles. An inverse correlation with serum cholesterol was also observed for Massilistercora timonensis, a player in regulating lipid turnover. The observed correlation patterns add to the growing evidence supporting the role of the gut microbiome as an essential regulator of host lipid metabolism.
Collapse
Affiliation(s)
- Ineta Kalnina
- Latvian Biomedical Research and Study Centre 1, LV-1067 Riga, Latvia
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Morales C, Arias-Carrasco R, Maracaja-Coutinho V, Seron P, Lanas F, Salazar LA, Saavedra N. Differences in Bacterial Small RNAs in Stool Samples from Hypercholesterolemic and Normocholesterolemic Subjects. Int J Mol Sci 2023; 24:ijms24087213. [PMID: 37108373 PMCID: PMC10138442 DOI: 10.3390/ijms24087213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Cholesterol metabolism is important at the physiological level as well as in several diseases, with small RNA being an element to consider in terms of its epigenetic control. Thus, the aim of this study was to identify differences between bacterial small RNAs present at the gut level in hypercholesterolemic and normocholesterolemic individuals. Twenty stool samples were collected from hypercholesterolemic and normocholesterolemic subjects. RNA extraction and small RNA sequencing were performed, followed by bioinformatics analyses with BrumiR, Bowtie 2, BLASTn, DESeq2, and IntaRNA, after the filtering of the reads with fastp. In addition, the prediction of secondary structures was obtained with RNAfold WebServer. Most of the small RNAs were of bacterial origin and presented a greater number of readings in normocholesterolemic participants. The upregulation of small RNA ID 2909606 associated with Coprococcus eutactus (family Lachnospiraceae) was presented in hypercholesterolemic subjects. In addition, a positive correlation was established between small RNA ID 2149569 from the species Blautia wexlerae and hypercholesterolemic subjects. Other bacterial and archaeal small RNAs that interacted with the LDL receptor (LDLR) were identified. For these sequences, the prediction of secondary structures was also obtained. There were significant differences in bacterial small RNAs associated with cholesterol metabolism in hypercholesterolemic and normocholesterolemic participants.
Collapse
Affiliation(s)
- Cristian Morales
- Centro de Biología Molecular y Farmacogenética, Núcleo Científico-Tecnológico en Biorecursos BIOREN, Universidad de La Frontera, Temuco 4811230, Chile
- Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Temuco 4801076, Chile
| | - Raul Arias-Carrasco
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8330378, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases-ACCDiS, Facultad de Química y Ciencias Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | - Pamela Seron
- Departamento de Ciencias de La Rehabilitación, Facultad de Medicina, Universidad de La Frontera, Temuco 4781151, Chile
| | - Fernando Lanas
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4781151, Chile
| | - Luis A Salazar
- Centro de Biología Molecular y Farmacogenética, Núcleo Científico-Tecnológico en Biorecursos BIOREN, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Saavedra
- Centro de Biología Molecular y Farmacogenética, Núcleo Científico-Tecnológico en Biorecursos BIOREN, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|