1
|
Jing C, Ding Y, Zhou J, Zhang Q, Wang M, Ou Q, Liu J, Xv T, Feng C, Yuan D, Wu T, Weng T, Xv X, Dai S, Qian Q, Sun W. Optimizing treatment administration strategies using negative mNGS results in corticosteroid-sensitive diffuse parenchymal lung diseases. iScience 2024; 27:110218. [PMID: 38993672 PMCID: PMC11237914 DOI: 10.1016/j.isci.2024.110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Timely adjustments of antibiotic and corticosteroid treatments are vital for patients with diffuse parenchymal lung diseases (DPLDs). In this study, 41 DPLD patients with negative metagenomic next-generation sequencing (mNGS) results who were responsive to corticosteroids were enrolled. Among these patients, about 26.8% suffered from drug-induced DPLD, while 9.8% presented autoimmune-related DPLD. Following the report of the negative mNGS results, in 34 patients with complete antibiotics administration profiles, 79.4% (27/34) patients discontinued antibiotics after receiving negative mNGS results. Moreover, 70.7% (29/41) patients began or increased the administration of corticosteroid upon receipt of negative mNGS results. In the microbiota analysis, Staphylococcus and Stenotrophomonas showed higher detection rates in patients with oxygenation index (OI) below 300, while Escherichia and Stenotrophomonas had higher abundance in patients with pleural effusion. In summary, our findings demonstrated the clinical significance of mNGS in assisting the antibiotic and corticosteroid treatment adjustments in corticosteroid-responsive DPLD. Lung microbiota may imply the severity of the disease.
Collapse
Affiliation(s)
- Chuwei Jing
- Department of Respiratory Medicine, Jiangsu Province Hospital/Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Yuchen Ding
- Department of Respiratory Medicine, Jiangsu Province Hospital/Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Ji Zhou
- Department of Respiratory Medicine, Jiangsu Province Hospital/Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Qun Zhang
- Department of Respiratory Medicine, Jiangsu Province Hospital/Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Mingyue Wang
- Department of Respiratory Medicine, Jiangsu Province Hospital/Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Qiuxiang Ou
- Research & Development, Dinfectome Inc., Nanjing, Jiangsu, China
| | - Jia Liu
- Research & Development, Dinfectome Inc., Nanjing, Jiangsu, China
| | - Ting Xv
- Department of Respiratory Medicine, School of Southeast University Affiliated Nanjing Chest Hospital, Nanjing, Jiangsu, China
| | - Chunlai Feng
- Department of Respiratory and Critical Care Medicine, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ting Wu
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ting Weng
- Nanjing Drum Tower Hospital Group Suqian Hospital, Jiangsu, China
| | - Xiaoyong Xv
- Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Shanlin Dai
- Department of Respiratory Medicine, Jiangsu Province Hospital/Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Qian Qian
- Jiangsu Health Vocational College, Nanjing, Jiangsu, China
| | - Wenkui Sun
- Department of Respiratory Medicine, Jiangsu Province Hospital/Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Wang C, Yin X, Ma W, Zhao L, Wu X, Ma N, Cao Y, Zhang Q, Ma S, Xu L, Wang X. Clinical application of bronchoalveolar lavage fluid metagenomics next-generation sequencing in cancer patients with severe pneumonia. Respir Res 2024; 25:68. [PMID: 38317206 PMCID: PMC10840150 DOI: 10.1186/s12931-023-02654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/25/2023] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE Metagenomic next-generation sequencing (mNGS), as an emerging technique for pathogen detection, has been widely used in clinic. However, reports on the application of mNGS in cancer patients with severe pneumonia remain limited. This study aims to evaluate the diagnostic performance of bronchoalveolar lavage fluid (BALF) mNGS in cancer patients complicated with severe pneumonia. METHODS A total of 62 cancer patients with severe pneumonia simultaneously received culture and mNGS of BALF were enrolled in this study. We systematically analyzed the diagnostic significance of BALF mNGS. Subsequently, optimization of anti-infective therapy based on the distribution of pathogens obtained from BALF mNGS was also assessed. RESULTS For bacteria and fungi, the positive detection rate of mNGS was significantly higher than culture method (91.94% versus 51.61%, P < 0.001), especially for poly-microbial infections (70.97% versus 12.90%, P < 0.001). Compared with the culture method, mNGS exhibited a diagnostic sensitivity of 100% and a specificity of 16.67%, with the positive predictive value (PPV) and negative predictive value (NPV) being 56.14% and 100%, respectively. The agreement rate between these two methods was 59.68%, whereas kappa consensus analysis indicated a poor concordance (kappa = 0.171). After receipt of BALF mNGS results, anti-infective treatment strategies in 39 out of 62 cases (62.90%) were optimized. Moreover, anti-tumor therapy was a high-risk factor for mixed infections (87.18% versus 65.22%, P = 0.04). CONCLUSIONS The present study showed that cancer patients with severe pneumonia, especially those received anti-tumor therapy, were more likely to have poly-microbial infections. BALF mNGS can provide a rapid and comprehensive pathogen distribution of pulmonary infection, making it a promising technique in clinical practice, especially for optimizing therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Chao Wang
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, 210009, China
- Department of Pharmacology, Nanjing Medical University, 101 Longmian Boulevard, Nanjing, Jiangsu, 210029, China
| | - Xiaojuan Yin
- Department of Pharmacology, Nanjing Medical University, 101 Longmian Boulevard, Nanjing, Jiangsu, 210029, China
| | - Wenqing Ma
- Department of Pharmacology, Nanjing Medical University, 101 Longmian Boulevard, Nanjing, Jiangsu, 210029, China
| | - Li Zhao
- Department of Pharmacology, Nanjing Medical University, 101 Longmian Boulevard, Nanjing, Jiangsu, 210029, China
| | - Xuhong Wu
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, 210009, China
| | - Nan Ma
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, 210009, China
| | - Yuepeng Cao
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, 210009, China
| | - Quanli Zhang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, Jiangsu, 210009, China
| | - Shuliang Ma
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, 210009, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, 210009, China.
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, Jiangsu, 210009, China.
| | - Xuerong Wang
- Department of Pharmacology, Nanjing Medical University, 101 Longmian Boulevard, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
3
|
Sun H, Chen R, Li T, Gao J, Gu X, Zhu X, Jin L, Shi Y, Li Q. Combination of transbronchial cryobiopsy based clinic-radiologic-pathologic strategy and metagenomic next-generation sequencing for differential diagnosis of rapidly progressive diffuse parenchymal lung diseases. Front Cell Infect Microbiol 2023; 13:1204024. [PMID: 37408612 PMCID: PMC10318139 DOI: 10.3389/fcimb.2023.1204024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Background The complicated spectrum of rapidly progressive diffused parenchymal lung diseases (RP-DPLD) creates obstacles to the precise diagnosis and treatment. We evaluated the differential diagnostic value of transbronchial cryobiopsy (TBCB) based clinic-radiologic-pathologic (CRP) strategy combined with bronchoalveolar lavage fluid (BALF) metagenomic next-generation sequencing (mNGS) in RP-DPLD patients. Methods RP-DPLD patients who underwent the diagnostic strategy of TBCB-based CRP combined with BALF mNGS at Shanghai East Hospital from May 2020 to Oct 2022 were retrospectively analyzed. Clinical characteristics were summarized, including demographic data, high-resolution computed tomography (HRCT) findings, histopathology of TBCB and microbiological results. Diagnostic value of the combined strategy, as well as the sensitivity, specificity, and positive detection rates of mNGS were evaluated. Results A total of 115 RP-DPLD patients were enrolled, with a mean age of 64.4 years old and a male proportion of 54.8%. The pulmonary imaging findings in most patients were complex and diverse, with all patients showing bilateral lung diffuse lesions in HRCT, and progressively aggravated imaging changes within one month. After combining TBCB-based CRP strategy with mNGS, all participants received a corresponding diagnosis with 100% diagnostic yield. In these patients, 58.3% (67/115) were diagnosed with noninfectious RP-DPLD and 41.7% (48/115) with infection-related RP-DPLD. There were 86.1% of cases with known etiology according to the DPLD classification. BALF mNGS and traditional pathogen detection methods were performed in all patients, the positive detection rates were 50.4% (58/115) and 32.2% (37/115), respectively. Meanwhile, the mNGS showed significantly higher sensitivity and negative predictive value than the traditional pathogen detection methods for the diagnosis of infection-related RP-DPLD (100% vs 60.4% (p<0.001), 100% vs 75.6% (p<0.001), respectively). Among noninfectious RP-DPLD patients, the true negative rate of mNGS was 85.1% (57/67). All patients had their treatment regimen modified and the 30-day mortality was 7.0%. Conclusion The novel strategy of TBCB-based CRP combined with mNGS provided dependable and sufficient evidence for the diagnosis, meanwhile further improved the accuracy of RP-DPLD treatment, as well as the prognosis of patients. Our results highlight the significant value of combined strategy in determining whether the RP-DPLD patients were infection associated or not.
Collapse
Affiliation(s)
- He Sun
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rongzhang Chen
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tian Li
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinli Gao
- Department of Pathology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xia Gu
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuyou Zhu
- Department of Pathology, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Lianfeng Jin
- Department of Scientific Affairs, Vision Medical Center for Infectious Diseases, Guangdong, China
| | - Yi Shi
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Clinical School of Nanjing, Nanjing, China
| | - Qiang Li
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW The coronavirus disease 2019 pandemic demonstrated broad utility of pathogen sequencing with rapid methodological progress alongside global distribution of sequencing infrastructure. This review considers implications for now moving clinical metagenomics into routine service, with respiratory metagenomics as the exemplar use-case. RECENT FINDINGS Respiratory metagenomic workflows have completed proof-of-concept, providing organism identification and many genotypic antimicrobial resistance determinants from clinical samples in <6 h. This enables rapid escalation or de-escalation of empiric therapy for patient benefit and reducing selection of antimicrobial resistance, with genomic-typing available in the same time-frame. Attention is now focussed on demonstrating clinical, health-economic, accreditation, and regulatory requirements. More fundamentally, pathogen sequencing challenges the traditional culture-orientated time frame of microbiology laboratories, which through automation and centralisation risks becoming increasingly separated from the clinical setting. It presents an alternative future where infection experts are brought together around a single genetic output in an acute timeframe, aligning the microbiology target operating model with the wider human genomic and digital strategy. SUMMARY Pathogen sequencing is a transformational proposition for microbiology laboratories and their infectious diseases, infection control, and public health partners. Healthcare systems that link output from routine clinical metagenomic sequencing, with pandemic and antimicrobial resistance surveillance, will create valuable tools for protecting their population against future infectious diseases threats.
Collapse
Affiliation(s)
- Jonathan D Edgeworth
- Department of Infectious Diseases, Guy's & St Thomas' NHS Foundation Trust & Department of Infectious Diseases, Kings College London, UK
| |
Collapse
|