1
|
Pérez AA, Vazquez-Meves G, Hunter ME. Early Detection of Wildlife Disease Pathogens Using CRISPR-Cas System Methods. CRISPR J 2024; 7:327-342. [PMID: 39479796 DOI: 10.1089/crispr.2024.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024] Open
Abstract
Wildlife diseases are a considerable threat to human health, conservation, and the economy. Surveillance is a critical component to mitigate the impact of animal diseases in these sectors. To monitor human diseases, CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated protein) biosensors have proven instrumental as diagnostic tools capable of detecting unique DNA and RNA sequences related to their associated pathogens. However, despite the significant advances in the general development of CRISPR-Cas biosensors, their use to support wildlife disease management is lagging. In some cases, wildlife diseases of concern could be rapidly surveyed using these tools with minimal technical, operational, or cost requirements to end users. This review explores the potential to further leverage this technology to advance wildlife disease monitoring and highlights how concerted standardization of protocols can help to ensure data reliability.
Collapse
Affiliation(s)
- Adam A Pérez
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida, USA
| | | | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida, USA
| |
Collapse
|
2
|
Li Y, Zhao L, Ma L, Bai Y, Feng F. CRISPR/Cas and Argonaute-powered lateral flow assay for pathogens detection. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39434421 DOI: 10.1080/10408398.2024.2416473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Pathogens contamination is a pressing global public issue that has garnered significant attention worldwide, especially in light of recent outbreaks of foodborne illnesses. Programmable nucleases like CRISPR/Cas and Argonaute hold promise as tools for nucleic acid testing owning to programmability and the precise target sequence specificity, which has been utilized for the development pathogens detection. At present, fluorescence, as the main signal output method, provides a simple response mode for sensing analysis. However, the dependence of fluorescence output on large instruments and correct analysis of output data limited its use in remote areas. Lateral flow strips (LFS), emerging as a novel flexible substrate, offer a plethora of advantages, encompassing easy-to-use, rapidity, visualization, low-cost, portability, etc. The integration of CRISPR/Cas and Argonaute with LFS, lateral flow assay (LFA), rendered a new and on-site mode for pathogens detection. In the review, we introduced two programmable nucleases CRISPR/Cas and Argonaute, followed by the structure, principle and advantages of LFA. Then diversified engineering detection pattens for viruses, bacteria, parasites, and fungi based on CRISPR/Cas and Argonaute were introduced and summarized. Finally, the challenge and perspectives involved in on-site diagnostic assays were discussed.
Collapse
Affiliation(s)
- Yaru Li
- School of Agriculture and Life Science, Shanxi Datong University, Datong, China
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, P. R. China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yunfeng Bai
- School of Agriculture and Life Science, Shanxi Datong University, Datong, China
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, P. R. China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, P. R. China
| |
Collapse
|
3
|
You D, Xu T, Huang BZ, Zhu L, Wu F, Deng LS, Liu ZY, Duan JQ, Wang YM, Ge LP, Liu ZH, Sun J, Zeng X, Lang LQ, Zhou YC, Chen DS, Lai SY, Ai YR, Huang JB, Xu ZW. Rapid, sensitive, and visual detection of swine Japanese encephalitis virus with a one-pot RPA-CRISPR/EsCas13d-based dual readout portable platform. Int J Biol Macromol 2024; 277:134151. [PMID: 39059534 DOI: 10.1016/j.ijbiomac.2024.134151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Japanese encephalitis (JE), a mosquito-borne zoonotic disease caused by the Japanese encephalitis virus (JEV), poses a serious threat to global public health. The low viremia levels typical in JEV infections make RNA detection challenging, necessitating early and rapid diagnostic methods for effective control and prevention. This study introduces a novel one-pot detection method that combines recombinant enzyme polymerase isothermal amplification (RPA) with CRISPR/EsCas13d targeting, providing visual fluorescence and lateral flow assay (LFA) results. Our portable one-pot RPA-EsCas13d platform can detect as few as two copies of JEV nucleic acid within 1 h, without cross-reactivity with other pathogens. Validation against clinical samples showed 100 % concordance with real-time PCR results, underscoring the method's simplicity, sensitivity, and specificity. This efficacy confirms the platform's suitability as a novel point-of-care testing (POCT) solution for detecting and monitoring the JE virus in clinical and vector samples, especially valuable in remote and resource-limited settings.
Collapse
Affiliation(s)
- Dong You
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bing-Zhou Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Fang Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-Shuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhe-Yan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jia-Qi Duan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan-Meng Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liang-Peng Ge
- ChongQing Academy of Animal Sciences, Chongqiing, China
| | - Zuo-Hua Liu
- ChongQing Academy of Animal Sciences, Chongqiing, China
| | - Jing Sun
- ChongQing Academy of Animal Sciences, Chongqiing, China
| | - Xiu Zeng
- ChongQing Academy of Animal Sciences, Chongqiing, China
| | - Li-Qiao Lang
- ChongQing Academy of Animal Sciences, Chongqiing, China
| | - Yuan-Cheng Zhou
- Key Laboratory of Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan, Animal Science Academy, Chengdu, China; Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan, Animal Science Academy, Chengdu, China
| | - Di-Shi Chen
- Sichuan Animal Disease Prevention and Control Center, Chengdu, China
| | - Si-Yuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan-Ru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jian-Bo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Wen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China.
| |
Collapse
|
4
|
Zhu XX, Wang YS, Li SJ, Peng RQ, Wen X, Peng H, Shi QS, Zhou G, Xie XB, Wang J. Rapid detection of mexX in Pseudomonas aeruginosa based on CRISPR-Cas13a coupled with recombinase polymerase amplification. Front Microbiol 2024; 15:1341179. [PMID: 38357344 PMCID: PMC10864651 DOI: 10.3389/fmicb.2024.1341179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
The principal pathogen responsible for chronic urinary tract infections, immunocompromised hosts, and cystic fibrosis patients is Pseudomonas aeruginosa, which is difficult to eradicate. Due to the extensive use of antibiotics, multidrug-resistant P. aeruginosa has evolved, complicating clinical therapy. Therefore, a rapid and efficient approach for detecting P. aeruginosa strains and their resistance genes is necessary for early clinical diagnosis and appropriate treatment. This study combines recombinase polymerase amplification (RPA) and clustered regularly interspaced short palindromic repeats-association protein 13a (CRISPR-Cas13a) to establish a one-tube and two-step reaction systems for detecting the mexX gene in P. aeruginosa. The test times for one-tube and two-step RPA-Cas13a methods were 5 and 40 min (including a 30 min RPA amplification reaction), respectively. Both methods outperform Quantitative Real-time Polymerase Chain Reactions (qRT-PCR) and traditional PCR. The limit of detection (LoD) of P. aeruginosa genome in one-tube and two-step RPA-Cas13a is 10 aM and 1 aM, respectively. Meanwhile, the designed primers have a high specificity for P. aeruginosa mexX gene. These two methods were also verified with actual samples isolated from industrial settings and demonstrated great accuracy. Furthermore, the results of the two-step RPA-Cas13a assay could also be visualized using a commercial lateral flow dipstick with a LoD of 10 fM, which is a useful adjunt to the gold-standard qRT-PCR assay in field detection. Taken together, the procedure developed in this study using RPA and CRISPR-Cas13a provides a simple and fast way for detecting resistance genes.
Collapse
Affiliation(s)
- Xiao-Xuan Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ying-Si Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Su-Juan Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ru-Qun Peng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Xia Wen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Hong Peng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Qing-Shan Shi
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Gang Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Xiao-Bao Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|