1
|
Wang N, Yu HJ, Han XY, Li C, Ye RZ, Du LF, Liu YT, Zhang MZ, Shi XY, Zhu DY, Shi W, Jia N, Jiang JF, Sun Y, Zhao L, Cui XM, Cao WC. Genomic characterization of an emerging Rickettsia barbariae isolated from tick eggs in northwestern China. Emerg Microbes Infect 2024; 13:2396870. [PMID: 39193640 PMCID: PMC11378659 DOI: 10.1080/22221751.2024.2396870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The continual emergence of tick-borne rickettsioses has garnered widespread global attention. Candidatus Rickettsia barbariae (Candidatus R. barbariae), which emerged in Italy in 2008, has been detected in humans from northwestern China. However, the lack of Candidatus R. barbariae genome and isolated strains limits the understanding of its biological characteristics and genomic features. Here, we isolated the Rickettsia for the first time from eggs of Rhipicephalus turanicus in northwestern China, and assembled its whole genome after next-generation sequencing, so we modified the proposed name to Rickettsia barbariae (R. barbariae) to conform to the International Code of Nomenclature of Prokaryotes. Phylogenetic analysis based on the whole genome revealed that it was most closely related to the pathogenic Rickettsia parkeri and Rickettsia africae. All virulence factors, present in the pathogenic spotted fever group rickettsiae, were identified in the R. barbariae isolate. These findings highlight the pathogenic potential of R. barbariae and the necessity for enhanced surveillance of the emerging Rickettsia in the human population.
Collapse
Affiliation(s)
- Ning Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, People's Republic of China
| | - Hui-Jun Yu
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiao-Yu Han
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, People's Republic of China
| | - Cheng Li
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Run-Ze Ye
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Li-Feng Du
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Ya-Ting Liu
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, People's Republic of China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiao-Yu Shi
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, People's Republic of China
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, People's Republic of China
| | - Wenqiang Shi
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, People's Republic of China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, People's Republic of China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, People's Republic of China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, People's Republic of China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, People's Republic of China
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, AMMS, Beijing, People's Republic of China
| |
Collapse
|
2
|
Maitre A, Mateos-Hernandez L, Azagi T, Foucault-Simonin A, Rakotobe S, Zając Z, Banović P, Porcelli S, Heckmann A, Galon C, Sprong H, Moutailler S, Cabezas-Cruz A, Fogaça AC. Rickettsia helvetica in C3H/HeN mice: A model for studying pathogen-host interactions. Heliyon 2024; 10:e37931. [PMID: 39323843 PMCID: PMC11422568 DOI: 10.1016/j.heliyon.2024.e37931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
An infection with the tick-borne Rickettsia helvetica has been associated with a broad spectrum of clinical manifestations in humans, but patients are only seldomly reported. Understanding its disease etiology necessitates well-stablished infection models, improving to recognize and diagnose patients with R. helvetica infection and facilitating the development of effective control strategies. In this study, we used C3H/HeN mice as a model to establish R. helvetica infection, achieving a high infection prevalence (89-100 %). While the liver and the spleen DNA consistently tested positive for infection in all challenged mice, additional infected organs included the kidneys, heart, and the lungs. Notably, a low prevalence of infection was observed in I. ricinus nymphs fed on R. helvetica-challenged mice. In addition, larvae were refractory to infection, suggesting that ticks exhibit low susceptibility to the pathogen. To the best of our knowledge, this is the first study of an animal model for R. helvetica infection. It serves as a valuable tool for advancing research on the interactions among the bacterium and its vertebrate host.
Collapse
Affiliation(s)
- Apolline Maitre
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250, Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Lourdes Mateos-Hernandez
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Tal Azagi
- National Institute for Public Health and the Environment, Netherlands
| | - Angélique Foucault-Simonin
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sabine Rakotobe
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 st, 20-080, Lublin, Poland
| | - Pavle Banović
- Clinic for Lyme Borreliosis and Other Tick-Borne Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000, Novi Sad, Serbia
| | - Stefania Porcelli
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Aurélie Heckmann
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Clémence Galon
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Hein Sprong
- National Institute for Public Health and the Environment, Netherlands
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Andrea C Fogaça
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Tian J, Liu H, Che J, Song L. Editorial: Innate immunity against intracellular bacteria: mechanisms and strategies. Front Immunol 2024; 15:1396114. [PMID: 38571948 PMCID: PMC10987856 DOI: 10.3389/fimmu.2024.1396114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Affiliation(s)
- Jingfei Tian
- Department of Respiratory Medicine, Meihekou Central Hospital, Meihekou, China
| | - Han Liu
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jingai Che
- Department of Respiratory Medicine, Meihekou Central Hospital, Meihekou, China
| | - Lei Song
- Department of Respiratory Medicine, Meihekou Central Hospital, Meihekou, China
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Dahmani M, Zhu JC, Cook JH, Riley SP. Anaphylatoxin signaling activates macrophages to control intracellular Rickettsia proliferation. Microbiol Spectr 2023; 11:e0253823. [PMID: 37855623 PMCID: PMC10714731 DOI: 10.1128/spectrum.02538-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Pathogenic Rickettsia species are extremely dangerous bacteria that grow within the cytoplasm of host mammalian cells. In most cases, these bacteria are able to overpower the host cell and grow within the protected environment of the cytoplasm. However, a dramatic conflict occurs when Rickettsia encounter innate immune cells; the bacteria can "win" by taking over the host, or the bacteria can "lose" if the host cell efficiently fights the infection. This manuscript examines how the immune complement system is able to detect the presence of Rickettsia and alert nearby cells. Byproducts of complement activation called anaphylatoxins are signals that "activate" innate immune cells to mount an aggressive defensive strategy. This study enhances our collective understanding of the innate immune reaction to intracellular bacteria and will contribute to future efforts at controlling these dangerous infections.
Collapse
Affiliation(s)
- Mustapha Dahmani
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Jinyi C. Zhu
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Jack H. Cook
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Sean P. Riley
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
- Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
5
|
Wang T, Wang C, Li C, Song L. The intricate dance: host autophagy and Coxiella burnetii infection. Front Microbiol 2023; 14:1281303. [PMID: 37808314 PMCID: PMC10556474 DOI: 10.3389/fmicb.2023.1281303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Q fever is a zoonotic disease caused by Coxiella burnetii, an obligatory intracellular bacterial pathogen. Like other intracellular pathogens, C. burnetii is able to survive and reproduce within host cells by manipulating host cellular processes. In particular, the relationship between C. burnetii infection and host autophagy, a cellular process involved in degradation and recycling, is of great interest due to its intricate nature. Studies have shown that autophagy can recognize and target intracellular pathogens such as Legionella and Salmonella for degradation, limiting their replication and promoting bacterial clearance. However, C. burnetii can actively manipulate the autophagic pathway to create an intracellular niche, known as the Coxiella-containing vacuole (CCV), where it can multiply and evade host immune responses. C. burnetii promotes the fusion of CCVs with lysosomes through mechanisms involving virulence factors such as Cig57 and CvpF. This review summarizes the latest findings on the dynamic interaction between host autophagy and C. burnetii infection, highlighting the complex strategies employed by both the bacterium and the host. A better understanding of these mechanisms could provide important insights into the development of novel therapeutic interventions and vaccine strategies against C. burnetii infections.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Infectious Diseases, First Hospital of Zibo City, Zibo, China
| | - Chao Wang
- Department of Traditional Chinese Medicine, First Hospital of Zibo City, Zibo, China
| | - Chang Li
- Department of VIP Unit, China-Japan Union Hospital, Changchun, China
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Kim Y, Clemens EG, Farner JM, Londono-Barbaran A, Grab DJ, Dumler JS. Spotted fever rickettsia-induced microvascular endothelial barrier dysfunction is delayed by the calcium channel blocker benidipine. Biochem Biophys Res Commun 2023; 663:96-103. [PMID: 37121130 PMCID: PMC10362780 DOI: 10.1016/j.bbrc.2023.04.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
The tick-borne bacterium Rickettsia parkeri is an obligate intracellular pathogen that belongs to spotted fever group rickettsia (SFGR). The SFG pathogens are characterized by their ability to infect and rapidly proliferate inside host vascular endothelial cells that eventually result in impairment of vascular endothelium barrier functions. Benidipine, a wide range dihydropyridine calcium channel blocker, is used to prevent and treat cardiovascular diseases. In this study, we tested whether benidipine has protective effects against rickettsia-induced microvascular endothelial cell barrier dysfunction in vitro. We utilized an in vitro vascular model consisting of transformed human brain microvascular endothelial cells (tHBMECs) and continuously monitored transendothelial electric resistance (TEER) across the cell monolayer. We found that during the late stages of infection when we observed TEER decrease and when there was a gradual increase of the cytoplasmic [Ca2+], benidipine prevented these rickettsia-induced effects. In contrast, nifedipine, another cardiovascular dihydropyridine channel blocker specific for L-type Ca2+ channels, did not prevent R. parkeri-induced drop of TEER. Additionally, neither drug was bactericidal. These data suggest that growth of R. parkeri inside endothelial cells is associated with impairment of endothelial cell monolayer integrity due to Ca2+ flooding through specific, benidipine-sensitive T- or N/Q-type Ca2+ channels but not through nifedipine-sensitive L-type Ca2+ channels. Further study will be required to discern the exact nature of the Ca2+ channels and Ca2+ transporting system(s) involved, any contributions of the pathogen toward this process, as well as the suitability of benidipine and new dihydropyridine derivatives as complimentary therapeutic drugs against Rickettsia-induced vascular failure.
Collapse
Affiliation(s)
- Yuri Kim
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Emily G Clemens
- Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Jennifer M Farner
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Andres Londono-Barbaran
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Dennis J Grab
- Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - J Stephen Dumler
- Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|