1
|
Wang X, Zhou J, Sun Z, Jia R, Huang D, Tang D, Xia T, Xiao F. Poly-γ-glutamic acid alleviates slow transit constipation by regulating aquaporin and gut microbes. Sci Rep 2025; 15:8244. [PMID: 40065004 PMCID: PMC11893738 DOI: 10.1038/s41598-025-92783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Slow transit constipation (STC) is a prevalent gastrointestinal disorder caused by colon dysfunction. Poly-γ-glutamic acid (γ-PGA), an anionic polymer known for its moisture retention, degradability, and food safety, was studied for its effects on loperamide-induced STC in mice. Treatment with γ-PGA for one week significantly increased both defecation frequency and fecal water content, with the high-dose group (10 g/kg/d) restoring fecal water content to 34.23%, outperforming the low- (16.16%) and medium-dose (27.08%) groups and exceeding the positive control, PEG, by 1.35 times. γ-PGA enhanced intestinal peristalsis and reduced the expression of inflammatory markers (IL-1β, IL-6, caspase-1, TLR2) and water-electrolyte transport genes (AQP3, AQP4, ENaC-β), while improving the expression of tight junction proteins (Claudin-1, Occludin, ZO-1) damaged by loperamide. Histopathological analyses confirmed γ-PGA's capacity to repair intestinal damage. Additionally, Western Blot analysis indicated reduced AQP3/4 levels in the colon, and molecular docking showed good binding affinity between γ-PGA and AQPs. γ-PGA also positively altered gut microbiota composition. Overall, γ-PGA shows promise in treating STC by modulating aquaporins and gut microbiota.
Collapse
Affiliation(s)
- Xiaoru Wang
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
| | - Jie Zhou
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
| | - Zengkun Sun
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
| | - Ruilei Jia
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
| | - Diyi Huang
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
| | - Dongqi Tang
- Center for Gene and Immunotherapy, Multidisciplinary Innovation Center for Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, PR China
| | - Tao Xia
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China.
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China.
| | - Fang Xiao
- Department of Gerontology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, PR China.
| |
Collapse
|
2
|
Wang C, Wu C, Song L. TRPA1-Activated Peptides from Saiga Antelope Horn: Screening, Interaction Mechanism, and Bioactivity. Int J Mol Sci 2025; 26:2119. [PMID: 40076741 PMCID: PMC11900222 DOI: 10.3390/ijms26052119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Saiga antelope horn (SAH), a rare traditional Chinese medicine, exhibits activities of anti-feverish convulsions and anti-inflammation, whereas its underlying mechanism and specific pharmacological components are still unclear. In the present study, transient receptor potential ankyrin 1 (TRPA1), a major transient receptor potential cation channel was used as a target protein to identified TRPA1 high-affinity peptides (THPs) from SAH digests. Firstly, the SAH was digested under in vitro gastrointestinal conditions. With the method of affinity ultrafiltration and liquid chromatography-mass spectrometry (AUF-LC/MS), about 200 peptides that have a high-affinity interaction with the TRPA1 protein were screened from SAH digests. Subsequently, bioactivity databases and molecular docking were further exploited to identified three THPs, including RCWPDCR, FGFDGDF, and WFCEGSF. Furthermore, RIN-14B cells, characterized by the high expression of TRPA1 on cell surfaces, were used as the cell model to investigate the biological effect of THPs. Immunofluorescence and ELISA were conducted and showed that THPs can increase the intracellular Ca2+ concentration and serotonin (5-HT) secretion in RIN-14B cells by activating TRPA1, which is evidenced by impaired upregulation of intracellular Ca2+ levels and 5-HT secretion after pretreatment with the TRPA1 inhibitor (HC-030031). Moreover, an analysis of Western blots displayed that THPs up-regulated the expression levels of the 5-HT synthesis rate-limiting enzyme (TPH1) and 5-hydroxytryptophan decarboxylase (Ddc), while serotonin reuptake transporter (SERT) levels were down-regulated, suggesting that THPs enhance 5-HT secretion by regulating the 5-HT synthesis pathway. In summary, our findings demonstrate that THPs, which were identified from SAH digest via TRPA1-targeted affinity panning, exhibited the activation of the TRPA1 channel and enhanced 5-HT release in RIN-14B cells.
Collapse
Affiliation(s)
- Chengwei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Chunjie Wu
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdisciplinary, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Sichuan Engineering Research Center for Endangered Medicinal Animals, Chengdu 611137, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
3
|
Xu C, Xu H, Dai X, Gui S, Chen J. Effects and mechanism of combination of Platycodon grandiflorum polysaccharides and Platycodon saponins in the treatment of chronic obstructive pulmonary disease rats through the gut-lung axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119305. [PMID: 39736349 DOI: 10.1016/j.jep.2024.119305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Platycodon grandiflorum (Jacq.) A. DC. (PG), a traditional Chinese medicine that has pharmaceutical and edible value, widely used to alleviate symptoms such as cough, sputum, sore throat, and respiratory diseases in clinical practice. The small molecular compounds, Platycodon saponins (PGS), and the macromolecular Platycodon grandiflorum polysaccharides (PGP) commonly coexist in the decoctions and leaching solutions of PG. However, the therapeutic effect of combination of PGP and PGS in ameliorating lung damage in chronic obstructive pulmonary disease (COPD) remains largely unexplored. AIM OF THE STUDY The objective of our study was to confirm the synergistic effect of PGP and PGS on the treatment of COPD rats, further examining the associated mechanisms pertaining to the gut-lung axis and microbial metabolism. METHODS In a COPD rat model induced by cigarette smoke and sawdust, efficacy was assessed through various assays encompassing lung index and histomorphology of the colon, small intestine, and lungs. The number of white blood cells in BALF was quantified using Swiss-Giemsa staining to investigate inflammatory cells infiltration in the lungs. Techniques such as immunohistochemistry, immunofluorescence, enzyme-linked immunosorbent assay, and western blotting were performed to evaluate the relevant expression of proteins in lung and intestine tissues. This aided in unveiling the protective mechanisms of co-administration of PGP and PGS in COPD rats. Additionally, bacterial genomic DNA was isolated and sequenced for intestinal microbiota analysis. Lastly, an in vitro anaerobic culture system was developed to co-incubate PGP and PGS with the objective of exploring the metabolic mechanisms mediated by gut microorganisms. RESULTS Our findings indicated that co-administration of PGP and PGS significantly mitigated the infiltration of inflammatory cells and suppressed the lung damage phenotypes in COPD rats, as evidenced by reductions in Hyp, NO, MUC2, and Ly6G. Furthermore, the combination of PGP and PGS notably ameliorated intestinal barrier damage by elevating the expression of MUC2, ZO-1, and ki67, while diminishing inflammatory markers such as CCL20, IFN-γ, and TNF-α. Remarkably, PGP amplified the protective efficacy of PGS against lung inflammatory damage by modulating the mucosal immune interaction between lung and small intestine, reducing intestinal mucosa permeability, and inhibiting the activation of microbial LPS-induced TLR4/NF-κB signaling pathways. Microbiome assays further revealed that PGP combined with PGS displayed the reversal change of gut microbiota in the COPD model. HPLC analysis of PGS and its transformation products in an anaerobic culture system showed that PGP effectively enhanced the microbial metabolism of Platycodin D and Platycodin D3 in vitro. CONCLUSIONS The synergistic combination of PGP and PGS might alleviate the pulmonary inflammation by mending intestinal barrier damage, modulating the co-immune mechanism of gut-lung axis in COPD rats, and fostering gut microbiota-mediated biotransformation. This innovative approach will contribute to an enhanced understanding of the intricate interactions within the multi-component system characteristic of traditional Chinese medicines. Consequently, it enriches our comprehension of the role of P. grandiflorus in human health care.
Collapse
Affiliation(s)
- Cong Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Huiling Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Xinyue Dai
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
| | - Juan Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China.
| |
Collapse
|
4
|
Sun Y, Wang Y, Yang Z, Han X, Zhang Y, Chen L, Huo J, Wu R, Wang W, Wang N. Neutral Polysaccharide from Platycodonis Radix-Ameliorated PM 2.5-Induced Lung Injury by Inhibiting the TLR4/NF-κB p65 Pathway and Regulating the Lung and Gut Microbiome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27923-27938. [PMID: 39626068 DOI: 10.1021/acs.jafc.4c07319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Platycodonis radix (PR) has been reported to play a protective role in lung injury. However, much less is known about the protective effect and mechanism of its main component PR polysaccharides (PRPs) in particulate matter (PM2.5)-induced lung injury. Here, a neutral polysaccharide (MW: 244.56 kDa) was isolated from PR, mainly composed of Rha, Ara, Gal, Glc, Xyl, and Man. PRPs significantly improved PM2.5-induced pulmonary edema, oxidative damage, and cell apoptosis and downregulated inflammatory factor levels in bronchoalveolar lavage fluid. Mechanistically, PRPs reduced intestinal mucosal barrier damage, thereby lowering serum lipopolysaccharide levels and inhibiting the overactivation of the TLR4/NF-κB signaling pathway in the lung tissue. Notably, PRPs could optimize the composition of pulmonary and intestinal microbiota. Oral administration of PRPs resulted in enrichment of short-chain fatty acid (SCFA)-producing bacteria, thereby upregulating the levels of acetate, butyrate, and isovalerate. Taken together, PRPs have great potential in preventing and repairing the lung injury caused by PM2.5.
Collapse
Affiliation(s)
- Yang Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanchun Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zaiming Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xianlei Han
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yue Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liyan Chen
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin 150036, China
| | - Jinhai Huo
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin 150036, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Weiming Wang
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin 150036, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
5
|
Zhang A, Chen S, Zhu Y, Wu M, Lu B, Zhou X, Zhu Y, Xu X, Liu H, Zhu F, Lin R. Intestinal microbiome changes and mechanisms of maintenance hemodialysis patients with constipation. Front Cell Infect Microbiol 2024; 14:1495364. [PMID: 39588509 PMCID: PMC11586350 DOI: 10.3389/fcimb.2024.1495364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 11/27/2024] Open
Abstract
Background Constipation is a common symptom in maintenance hemodialysis patients and greatly affects the quality of survival of hemodialysis patients. Fecal microbiota transplantation and probiotics are feasible treatments for functional constipation, but there is still a gap in the research on the characteristics of gut flora in patients with maintenance hemodialysis combined with constipation. The aim of this study is to clarify the characteristics of the intestinal flora and its changes in maintenance hemodialysis patients with constipation. Methods Fecal samples were collected from 45 participants, containing 15 in the maintenance hemodialysis constipation group,15 in the maintenance hemodialysis non-constipation group and 15 in the healthy control group. These samples were analyzed using 16S rRNA gene sequencing. The feature of the intestinal microbiome of maintenance hemodialysis constipation group and the microbiome differences among the three groups were elucidated by species annotation analysis, α-diversity analysis, β-diversity analysis, species difference analysis, and predictive functional analysis. Results The alpha diversity analysis indicated that maintenance hemodialysis constipation group was less diverse and homogeneous than maintenance hemodialysis non-constipation group and healthy control group. At the genus level, the top ten dominant genera in maintenance hemodialysis constipation group patients were Enterococcus, Escherichia-Shigella, Bacteroides, Streptococcus, Bifidobacterium, Ruminococcus_gnavus_group, Lachnospiraceae_unclassified, Faecalibacterium, Akkermansia and UCG-002. Compared with non-constipation group, the Enterococcus, Rhizobiales_unclassified, Filomicrobium, Eggerthella, Allobaculum, Prevotella_7, Gordonibacter, Mitochondria_unclassified, Lachnoanaerobaculum were significantly higher in constipation group (p<0.05). Compared with non-constipation group, the Kineothrix, Rhodopirellula, Weissella were significantly lower in constipation group (p<0.05). The predictive functional analysis revealed that compared with non-constipation group, constipation group was significantly enriched in pathways associated with pyruate metabolism, flavonoid biosynthesis. Conclusions This study describes for the first time the intestinal microbiome characteristics of maintenance hemodialysis patients with constipation. The results of this study suggest that there is a difference in the intestinal flora between maintenance hemodialysis patients with constipation and maintenance hemodialysis patients without constipation.
Collapse
Affiliation(s)
- Aiping Zhang
- Department of nephrology, Hangzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shilei Chen
- Department of General Medicine, Hangzhou Xihu District Zhuantang Street Community Health Service Centre, Hangzhou, Zhejiang, China
| | - Yanqin Zhu
- Department of nephrology, Hangzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mengqi Wu
- Department of nephrology, Hangzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bin Lu
- Department of nephrology, Hangzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xin Zhou
- Department of nephrology, Hangzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yan Zhu
- Department of nephrology, Hangzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinyu Xu
- Department of Oncology, Hangzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hong Liu
- Department of nephrology, Hangzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fenggui Zhu
- Department of nephrology, Hangzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Riyang Lin
- Department of nephrology, Hangzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Deng M, Ye J, Zhang R, Zhang S, Dong L, Su D, Zhang M, Huang F. Shatianyu ( Citrus grandis L. Osbeck) whole fruit alleviated loperamide-induced constipation via enhancing gut microbiota-mediated intestinal serotonin secretion and mucosal barrier homeostasis. Food Funct 2024; 15:10614-10627. [PMID: 39373198 DOI: 10.1039/d4fo02765e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This study aims to explore the effects of Shatianyu (Citrus grandis L. Osbeck) whole fruit powder (SWFP) enriched in flavonoids and dietary fiber on loperamide-induced constipation after a 4-week administration in the diet, together with possible microbiota-mediated mechanisms. The SWFP intervention shortened the first defecation time and increased defecation frequency; it also increased the serum serotonin (5-HT) level and decreased the LPS level in constipation mice. SWFP promoted the development of colonic enterochromaffin cells (ECs) and upregulated the expression of 5-HT synthetic rate-limiting enzyme (Tph1) in ECs. Furthermore, SWFP downregulated the expression of colonic TLR-4, TNF-α and IL-1β and upregulated the expression of tight junction proteins. Besides promoting 5-HT secretion in ECs, butyrate was proved to play a positive role in enhancing intestinal barrier homeostasis through FFAR2/3. Notably, SWFP increased both the fecal butyrate contents and colonic FFAR3 expression in a dose-related manner. Likewise, SWFP enriched butyrate-production related microbes, such as Ruminococcus_torques_group, Ruminococcus, Dubosiella and Parasutterella. Thus, SWFP might alleviate constipation by regulating the microbiota to produce butyrate, thereby enhancing colonic 5-HT secretion and the FFAR3-mediated anti-inflammatory pathway.
Collapse
Affiliation(s)
- Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Jiamin Ye
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Shuai Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| |
Collapse
|
7
|
Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:413-444. [PMID: 38937158 DOI: 10.1016/j.joim.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The property theory of traditional Chinese medicine (TCM) has been practiced for thousands of years, playing a pivotal role in the clinical application of TCM. While advancements in energy metabolism, chemical composition analysis, machine learning, ion current modeling, and supercritical fluid technology have provided valuable insight into how aspects of TCM property theory may be measured, these studies only capture specific aspects of TCM property theory in isolation, overlooking the holistic perspective inherent in TCM. To systematically investigate the modern interpretation of the TCM property theory from multidimensional perspectives, we consulted the Chinese Pharmacopoeia (2020 edition) to compile a list of Chinese materia medica (CMM). Then, using the Latin names of each CMM and gut microbiota as keywords, we searched the PubMed database for relevant research on gut microbiota and CMM. The regulatory patterns of different herbs on gut microbiota were then summarized from the perspectives of the four natures, the five flavors and the meridian tropism. In terms of the four natures, we found that warm-natured medicines promoted the colonization of specific beneficial bacteria, while cold-natured medicines boosted populations of some beneficial bacteria while suppressing pathogenic bacteria. Analysis of the five flavors revealed that sweet-flavored and bitter-flavored CMMs positively influenced beneficial bacteria while inhibiting harmful bacteria. CMMs with different meridian tropism exhibited complex modulative patterns on gut microbiota, with Jueyin (Liver) and Taiyin (Lung) meridian CMMs generally exerting a stronger effect. The gut microbiota may be a biological indicator for characterizing the TCM property theory, which not only enhances our understanding of classic TCM theory but also contributes to its scientific advancement and application in healthcare. Please cite this article as: Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. J Integr Med 2024; 22(4): 413-445.
Collapse
Affiliation(s)
- Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia-Guo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chong-Ming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
8
|
Wang K, Qiu H, Chen F, Cai P, Qi F. Considering traditional Chinese medicine as adjunct therapy in the management of chronic constipation by regulating intestinal flora. Biosci Trends 2024; 18:127-140. [PMID: 38522913 DOI: 10.5582/bst.2024.01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Chronic constipation is one of the most common gastrointestinal disorders worldwide. Due to changes in diet, lifestyle, and the aging population, the incidence of chronic constipation has increased year by year. It has had an impact on daily life and poses a considerable economic burden. Nowadays, many patients with chronic constipation try to seek help from complementary and alternative therapies, and traditional Chinese medicine (TCM) is often their choice. The intestinal flora play an important role in the pathogenesis of constipation by affecting the body's metabolism, secretion, and immunity. Regulating the intestinal flora and optimizing its composition might become an important prevention and treatment for chronic constipation. TCM has unique advantages in regulating the imbalance of intestinal flora, and its curative effect is precise. Therefore, we reviewed the relationship between intestinal flora and chronic constipation as well as advances in research on TCM as adjunct therapy in the management of chronic constipation by regulating intestinal flora. Some single Chinese herbs and their active ingredients (e.g., Rheum palmatum, Radix Astragalus, and Cistanche deserticola), some traditional herbal formulations (e.g., Jichuan decoction, Zengye decoction, and Zhizhu decoction) and some Chinese patent medicines (e.g., Maren pills and Shouhui Tongbian capsules) that are commonly used to treat chronic constipation by regulating intestinal flora are highlighted and summarized. Moreover, some external forms of TCM, and especially acupuncture, have also been found to improve intestinal movement and alleviate constipation symptoms by regulating intestinal flora. We hope this review can contribute to an understanding of TCM as an adjunct therapy for chronic constipation and that it can provide useful information for the development of more effective constipation therapies.
Collapse
Affiliation(s)
- Ke Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Ji'nan, China
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated with Shandong First Medical University, Ji'nan, China
| | - Hua Qiu
- Gynecology, Jinan Municipal Hospital of Traditional Chinese Medicine, Ji'nan, China
| | - Fang Chen
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated with Shandong First Medical University, Ji'nan, China
| | - Pingping Cai
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated with Shandong First Medical University, Ji'nan, China
| | - Fanghua Qi
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated with Shandong First Medical University, Ji'nan, China
| |
Collapse
|
9
|
Cui L, Zhang B, Zou S, Liu J, Wang P, Li H, Zhang Z. Fenchone Ameliorates Constipation-Predominant Irritable Bowel Syndrome via Modulation of SCF/c-Kit Pathway and Gut Microbiota. J Microbiol Biotechnol 2024; 34:367-378. [PMID: 38073315 PMCID: PMC10940742 DOI: 10.4014/jmb.2308.08011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 03/01/2024]
Abstract
In this study we sought to elucidate the therapeutic effects of fenchone on constipation-predominant irritable bowel syndrome (IBS-C) and the underlying mechanisms. An IBS-C model was established in rats by administration of ice water by gavage for 14 days. Fenchone increased the reduced body weight, number of fecal pellets, fecal moisture, and intestinal transit rate, and decreased the enhanced visceral hypersensitivity in the rat model of IBS-C. In addition, fenchone increased the serum content of excitatory neurotransmitters and decreased the serum content of inhibitory neurotransmitters in the IBS-C rat model. Meanwhile, western blot and immunofluorescence experiments indicated that fenchone increased the expressions of SCF and c-Kit. Furthermore, compared with the IBS-C model group, fenchone increased the relative abundance of Lactobacillus, Blautia, Allobaculum, Subdoligranulum, and Ruminococcaceae_UCG-008, and reduced the relative abundance of Bacteroides, Enterococcus, Alistipes, and Escherichia-Shigella on the genus level. Overall, fenchone ameliorates IBS-C via modulation of the SCF/c-Kit pathway and gut microbiota, and could therefore serve as a novel drug candidate against IBS-C.
Collapse
Affiliation(s)
- Li Cui
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| | - Bin Zhang
- Digestive Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, Jiangsu, P.R. China
| | - Shuting Zou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| | - Jing Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| | - Pingrong Wang
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210016, P.R. China
| | - Hui Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
10
|
Ma JQ, Dong AB, Xia HY, Wen SY. Preparation methods, structural characteristics, and biological activity of polysaccharides from Platycodon grandiflorus. Int J Biol Macromol 2024; 258:129106. [PMID: 38161010 DOI: 10.1016/j.ijbiomac.2023.129106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/19/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Platycodon grandiflorus (P. grandiflorus), a traditional Chinese medicinal herb used for both medicine and food, has a long history of treating respiratory infections, bronchitis, pneumonia, and other lung-related diseases. The therapeutic effects of P. grandiflorus are attributed to its chemical components, including polysaccharides. Among these components, Platycodon grandiflorus polysaccharides (PGP) are recognized as one of the most important and abundant active ingredients, exhibiting various biological activities such as prebiotic, antioxidant, antiviral, anticancer, antiangiogenic, and immune regulatory properties. Incorporating the principles of traditional Chinese medicine, carrier concepts, and modern targeted drug delivery technologies, PGP can influence the target sites and therapeutic effects of other drugs while also serving as a drug carrier for targeted and precise treatments. Therefore, it is essential to provide a comprehensive review of the extraction, separation, purification, physicochemical properties, and biological activities of PGP. In the future, by integrating new concepts, technologies, and processes, further references and guidance can be provided for the comprehensive development of PGP. This will contribute to the advancement of P. grandiflorus in various fields such as pharmaceuticals, health products, and food.
Collapse
Affiliation(s)
- Jie-Qiong Ma
- College of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030606, China
| | - Ao-Bo Dong
- Third Hospital of Baotou City, Baotou 014040, China
| | - Hong-Yan Xia
- College of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030606, China
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030606, China.
| |
Collapse
|
11
|
Feng L, Shi Y, Zou J, Zhang X, Zhai B, Guo D, Sun J, Wang M, Luan F. Recent advances in Platycodon grandiflorum polysaccharides: Preparation techniques, structural features, and bioactivities. Int J Biol Macromol 2024; 259:129047. [PMID: 38171434 DOI: 10.1016/j.ijbiomac.2023.129047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Platycodon grandiflorum, a globally recognized medicinal and edible plant, possesses significant nutritional value and pharmacological value. In traditional Chinese medicine, it has the effects of tonifying the spleen and replenishing the Qi, moistening the lung and relieving the cough, clearing the heat and detoxifying, and relieving the pain. Accumulating evidence has revealed that the polysaccharides from P. grandiflorum (PGPs) are one of the major and representative biologically active macromolecules and have diverse biological activities, such as immunomodulatory activity, anti-inflammatory activity, anti-tumor activity, regulation of the gut microbiota, anti-oxidant activity, anti-apoptosis activity, anti-angiogenesis activity, hypoglycemic activity, anti-microbial activity, and so on. Although the polysaccharides extracted from P. grandiflorum have been extensively studied for the extraction and purification methods, structural characteristics, and pharmacological activities, the knowledge of their structures and bioactivity relationship, toxicologic effects, and pharmacokinetic profile is limited. The main purpose of the present review is to provide comprehensively and systematically reorganized information on extraction and purification, structure characterizations, and biological functions as well as toxicities of PGPs to support their therapeutic potentials and sanitarian functions. New valuable insights for future research regarding PGPs were also proposed in the fields of therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Lile Feng
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bingtao Zhai
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Mei Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
12
|
Li D, Liang W, Zhang W, Huang Z, Liang H, Liu Q. Fecal microbiota transplantation repairs intestinal permeability and regulates the expression of 5-HT to influence alcohol-induced depression-like behaviors in C57BL/6J mice. Front Microbiol 2024; 14:1241309. [PMID: 38249454 PMCID: PMC10797076 DOI: 10.3389/fmicb.2023.1241309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
The epidemic of alcohol abuse affects millions of people worldwide. Relevant evidence supports the notion that the gut microbiota (GM) plays a crucial role in central nervous system (CNS) function, and its composition undergoes changes following alcohol consumption. Therefore, the purpose of this study was to investigate the effect of reconstructing the gut microbiota by fecal microbiota transplantation (FMT) on alcohol dependence. Here, we established an alcohol dependence model with C57BL/6J mice and proved that FMT treatment improved anxiety-like behavior and alcohol-seeking behavior in alcohol-dependent mice. Additionally, we found that the expression of the intestinal intercellular tight junction structure proteins ZO-1 and occludin was significantly increased after FMT. FMT repaired intestinal permeability in alcohol-dependent mice and decreased the levels of lipopolysaccharide (LPS) and proinflammatory factors. Moreover, the serotonin (5-hydroxytryptamine, 5-HT) content was significantly increased in alcohol-dependent mouse intestinal and brain tissues after receiving the fecal microbiome from healthy mice. 16S rRNA sequencing demonstrated that FMT markedly reshaped the composition of the gut microbiota and elicited changes in the intestinal barrier and 5-HT levels. Collectively, our results revealed that FMT has a palliative effect on alcohol dependence and explored the underlying mechanisms, which provides new strategies for the treatment of alcohol dependence.
Collapse
Affiliation(s)
- Dezhi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Liang
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Wentong Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Haipeng Liang
- Qingyang City People's Hospital General Surgery, Qingyang, China
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
13
|
Cui L, Hua Y, Zou S, Gu C, Li H. Combination of fenchone and sodium hyaluronate ameliorated constipation-predominant irritable bowel syndrome and underlying mechanisms. Chem Biol Drug Des 2024; 103:e14397. [PMID: 38030381 DOI: 10.1111/cbdd.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
We sought to explore the protective effect of the combination of fenchone (FE) and sodium hyaluronate (SH) on ice water-induced IBS-C rats and the potential mechanism. The neurotransmitter levels, including substance P (SP), motilin (MTL), 5-hydroxytryptamine (5-HT), and vasoactive intestinal peptide (VIP), were determined by ELISA methods. The stem cell factors (SCF)/c-Kit signaling pathway-related protein and mRNA levels were determined by western blot and reverse transcription quantitative polymerase chain reaction (RT-qPCR) analyses, respectively. The expressions of tight ZO-1, Occludin, and Claudin-1 were also measured by western blot assay and immunofluorescence staining. The 16S rRNA gene sequence was used to measure the composition of gut microbiota. The co-administration of FE and SH improved the body weight, number of fecal pellets, fecal moisture, abdominal with drawal reflex score, and gastrointestinal transit rate in IBS-C rats. The unique efficacy of combination depended on the regulation of balance between excitatory and inhibitory neurotransmitters, enhancement of intestinal barrier function, and activation of SCF/c-Kit pathway. The gut microbiota structure was also restored. The ability of FE combined with SH to regulate SCF/c-Kit signaling pathway, enhance intestinal barrier function, and modulate gut microbiota contributes to their efficacy in managing IBS-C in rats.
Collapse
Affiliation(s)
- Li Cui
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongzhi Hua
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Digestive Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Shuting Zou
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Gu
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Li
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Zhang S, Sun Y, Nie Q, Hu J, Li Y, Shi Z, Ji H, Zhang H, Zhao M, Chen C, Nie S. Effects of four food hydrocolloids on colitis and their regulatory effect on gut microbiota. Carbohydr Polym 2024; 323:121368. [PMID: 37940266 DOI: 10.1016/j.carbpol.2023.121368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 11/10/2023]
Abstract
Hydrocolloids are important food additives and have potential regulatory effects on gut microbiota. The development of colitis is closely related to changes in gut microbiota. The effect of food hydrocolloids on the structure of the gut microbiota and their impact on colitis has not been well investigated. Therefore, this study investigated the effects of four hydrocolloids (carrageenan, guar gum, xanthan gum, and pectin) on colitis, and explored their regulatory effects on gut microbiota. The results indicated that pectin and guar effectively alleviated body weight loss and disease activity index, reduced inflammatory cytokine levels, and promoted short-chain fatty acids (SCFAs) production. They increased the abundance of Akkermansia muciniphila, Oscillospira, and Lactobacillus, and Akkermansia abundance had a negative correlation with the severity of colitis. In contrast, carrageenan and xanthan gum did not significantly improve colitis, and carrageenan reduced the production of SCFAs. Both carrageenan and xanthan gum increased the abundance of Ruminococcus gnavus, and Ruminococcus abundance was positively correlated with the severity of colitis. These findings suggest that food additives have an impact on host health and provide guidance for the diet of patients with colitis.
Collapse
Affiliation(s)
- Shanshan Zhang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Yonggan Sun
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Yuhao Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Zefu Shi
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Haihua Ji
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Mingjiao Zhao
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Chunhua Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
15
|
Cui C, Shi Y, Hong H, Zhou Y, Qiao C, Zhao L, Jia X, Zhao W, Shen Y. 5-HT4 Receptor is Protective for MPTP-induced Parkinson's Disease Mice Via Altering Gastrointestinal Motility or Gut Microbiota. J Neuroimmune Pharmacol 2023; 18:610-627. [PMID: 37782386 DOI: 10.1007/s11481-023-10085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Serotonergic dysfunction is related to both motor and nonmotor symptoms in Parkinson's disease (PD). As a 5-HT receptor, 5-HT4 receptor (5-HT4R) is well-studied and already-used in clinical therapy of constipation, which is a typical non-motor symptom in PD. In this study, we investigated the role of 5-HT4R as a regulator of gut function in MPTP-induced acute PD mice model. Daily intraperitoneal injection of GR 125487 (5-HT4R antagonist) was administered 3 days before MPTP treatment until sacrifice. Seven days post-MPTP treatment, feces were collected and gastrointestinal transit time (GITT) was measured, 8 days post-MPTP treatment, behavioral tests were performed, and then animals were sacrificed for the further analysis. We found GR 125487 pretreatment not only increased GITT, but also aggravated MPTP-induced motor bradykinesia. In addition, GR 125487 pretreatment exacerbated the loss of dopaminergic neurons probably by suppressing JAK2/PKA/CREB signaling pathway and increased reactive glia and neuroinflammation in the striatum. 16 S rRNA sequencing of fecal microbiota showed that GR 125487 pretreatment altered the composition of gut microbiota, in which the abundance of Akkermansia muciniphila and Clostridium clostridioforme was increased, whereas that of Parabacteroides distasonis and Bacteroides fragilis was decreased, which are closely associated with inflammation condition. Taken together, we demonstrated that GR 125487 pretreatment exacerbates MPTP-induced striatal neurodegenerative processes possibly via the JAK2/PKA/CREB pathway and neuroinflammation by altering gut microbiota composition. In the microbiota-gut-brain axis of PD, 5-HT4R should be further explored and might serve as a target for PD diagnosis and treatment.
Collapse
Affiliation(s)
- Chun Cui
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Yun Shi
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hui Hong
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yu Zhou
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chenmeng Qiao
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Liping Zhao
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xuebing Jia
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Weijiang Zhao
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yanqin Shen
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
16
|
Essmat N, Karádi DÁ, Zádor F, Király K, Fürst S, Al-Khrasani M. Insights into the Current and Possible Future Use of Opioid Antagonists in Relation to Opioid-Induced Constipation and Dysbiosis. Molecules 2023; 28:7766. [PMID: 38067494 PMCID: PMC10708112 DOI: 10.3390/molecules28237766] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Opioid receptor agonists, particularly those that activate µ-opioid receptors (MORs), are essential analgesic agents for acute or chronic mild to severe pain treatment. However, their use has raised concerns including, among others, intestinal dysbiosis. In addition, growing data on constipation-evoked intestinal dysbiosis have been reported. Opioid-induced constipation (OIC) creates an obstacle to continuing treatment with opioid analgesics. When non-opioid therapies fail to overcome the OIC, opioid antagonists with peripheral, fast first-pass metabolism, and gastrointestinal localized effects remain the drug of choice for OIC, which are discussed here. At first glance, their use seems to only be restricted to constipation, however, recent data on OIC-related dysbiosis and its contribution to the appearance of several opioid side effects has garnered a great of attention from researchers. Peripheral MORs have also been considered as a future target for opioid analgesics with limited central side effects. The properties of MOR antagonists counteracting OIC, and with limited influence on central and possibly peripheral MOR-mediated antinociception, will be highlighted. A new concept is also proposed for developing gut-selective MOR antagonists to treat or restore OIC while keeping peripheral antinociception unaffected. The impact of opioid antagonists on OIC in relation to changes in the gut microbiome is included.
Collapse
Affiliation(s)
- Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Dávid Árpád Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
| |
Collapse
|
17
|
Terefe L, Nardos A, Debella A, Dereje B, Arega M, Abebe AG, Gemechu W, Woldekidan S. Antidiarrheal Activities of the Methanol Leaf Extracts of Olinia rochetiana (Oliniaceae) Against Castor Oil-Induced Diarrhea in Mice. J Exp Pharmacol 2023; 15:485-495. [PMID: 38026232 PMCID: PMC10676088 DOI: 10.2147/jep.s441555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background Olinia rochetiana has been used traditionally to cure diarrheal disease. Therefore, this study aimed to investigate the acute toxicity and antidiarrheal effect of O. rochetiana leaf extracts. Methods Cold maceration was used to extract plant leaf powder with 80% methanol. The extract's antidiarrheal action was tested against a castor oil-induced diarrheal model, a charcoal meal test, and enteropooling tests at doses of 100, 200, and 400 mg/kg. Negative controls received the vehicle at 10 mL/kg, while positive controls received loperamide at 3 mg/kg. Results From the study, no apparent toxicity was observed when a single dose of 2000 mg/kg was administered. In the castor oil-induced model, the extract delayed the onset of diarrhea, reduced stool frequency, and decreased wet feces weight and number in a dose-dependent manner at 200 mg/kg (p < 0.05) and 400 mg/kg (p < 0.01). The percent reduction in moist feces at 100, 200, and 400 mg/kg was 54.2, 23.97, and 18.26%, respectively, indicating a significant dose-dependent decrease. In a charcoal meal test, the extracts at 200 and 400 mg/kg revealed a peristaltic index of 65 and 46%, respectively, with considerable inhibition of charcoal transport at 23 and 39%. The weight and volume of intestinal contents dropped significantly at a dose of 400 mg/kg (p < 0.01), which is 0.43 mg/kg, in the enteropooling test when compared with the tested dose. The computed in vivo antidiarrheal index revealed diarrheal inhibition values of 46.06 and 71.06% at 200 and 400 mg/kg, respectively. Conclusion In the current investigation, O. rochetiana showed significant antidiarrheal activity with no symptoms of toxicity in mice.
Collapse
Affiliation(s)
- Lidet Terefe
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Aschalew Nardos
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Asfaw Debella
- Department of Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Beyene Dereje
- Department of Pharmacology, School of Medicine, College of Medicine and Health Sciences, Dire Dawa University, Dire Dawa, Ethiopia
| | - Melese Arega
- Department of Pharmacy, Pawi Health Sciences College, Pawi, Ethiopia
| | - Abiy Gelagle Abebe
- Department of Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Worku Gemechu
- Department of Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Samuel Woldekidan
- Department of Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| |
Collapse
|
18
|
Liu B, Zhang Z, Liu X, Hu W, Wu W. Gastrointestinal Fermentable Polysaccharide Is Beneficial in Alleviating Loperamide-Induced Constipation in Mice. Nutrients 2023; 15:4364. [PMID: 37892439 PMCID: PMC10610129 DOI: 10.3390/nu15204364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
To investigate the role of gastrointestinal (GI) polysaccharide fermentation in alleviating constipation, two polysaccharide fractions were isolated from a soluble fiber extract with determined anti-constipation activity: a 2.04 kDa neutral fraction (SSP-1) contained 99.29% glucose, and a 41.66 kDa acidic fraction (SSP-2) contained 63.85% uronic acid. After mice were given loperamide for 14 d to induce constipation, the GI transit rate increased significantly in the SSP-1 group (p < 0.05) but not in the SSP-2 group. The stool weight in the SSP-2 group was significantly higher than that in SSP-1 (383.60 mg vs. 226.23 mg) (p < 0.05). Both SSP-1 and SSP-2 groups had significantly increased serum gastrin and motilin levels (p < 0.05) and changes in their fecal short-chain fatty acid (SCFA) profiles, while SSP-1 showed better fermentation properties than SSP-2 in terms of statistically higher fecal contents of acetic acid and total SCFAs (p < 0.05). Bioinformatic analysis indicated that SSP-1 upregulated bacteria such as Oscillibacter to improve SCFA metabolism and stimulate GI hormone secretion, while SSP-2 had less influence on the gut microbiota. These results suggest that the neutral polysaccharide with superior GI fermentation properties exerted beneficial effects on constipation, while the less fermentable pectic fraction might act as a stool-bulking agent.
Collapse
Affiliation(s)
- Buyu Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (B.L.); (W.H.)
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Zhiguo Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (B.L.); (W.H.)
| | - Xingquan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Weiwei Hu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (B.L.); (W.H.)
| | - Weicheng Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (B.L.); (W.H.)
| |
Collapse
|