1
|
Dudek B, Brożyna M, Karoluk M, Frankiewicz M, Migdał P, Szustakiewicz K, Matys T, Wiater A, Junka A. In Vitro and In Vivo Translational Insights into the Intraoperative Use of Antiseptics and Lavage Solutions Against Microorganisms Causing Orthopedic Infections. Int J Mol Sci 2024; 25:12720. [PMID: 39684431 DOI: 10.3390/ijms252312720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
The growing antibiotic resistance of microorganisms causing postoperative infections following orthopedic surgeries underscores the urgent need for localized antiseptic and lavage delivery systems to enhance infection control. This study evaluates the in vitro effectiveness of antiseptic and lavage solutions-including polyhexanide, povidone-iodine, low-concentrated hypochlorite, Ringer's solution, and saline-against Staphylococcus epidermidis, Staphylococcus aureus MRSA, Cutibacterium acnes, Corynebacterium amycolatum, Pseudomonas aeruginosa, and Candida albicans. Using microplate models (Minimum Inhibitory Concentration, Minimum Biofilm Eradication Concentration, and Biofilm-Oriented Antiseptic Test assays), flow-based models (Bioflux system), and surfaces relevant to orthopedic implants (e.g., stainless steel disks/screws, Co-Cr-Mo, Ti-Al-Nb orthopedic alloys, and ultra-high-molecular-weight polyethylene), as well as a bio-nano-cellulose scaffold representing tissue, we assessed the solutions' activity. The cytotoxicity of the solutions was evaluated using osteoblast and keratinocyte cell lines, with additional in vivo insights gained through the Galleria mellonella larval model. The results show that polyhexanide-based solutions outperformed povidone-iodine in biofilm eradication in most tests applied, particularly on complex surfaces, whereas iodine demonstrated higher cytotoxicity in applied in vitro and in vivo tests. Low-concentration hypochlorite solutions exhibited minimal antibiofilm activity but also showed no cytotoxicity in cell line and G. mellonella larval models. These findings highlight the importance of careful antiseptic selection and rinsing protocols to balance infection control efficacy with tissue compatibility in orthopedic applications.
Collapse
Affiliation(s)
- Bartłomiej Dudek
- "P.U.M.A.", Platform for Unique Model Application, Department of Pharmacy, Wroclaw Medical University, Borowska 211, 50-534 Wroclaw, Poland
| | - Malwina Brożyna
- "P.U.M.A.", Platform for Unique Model Application, Department of Pharmacy, Wroclaw Medical University, Borowska 211, 50-534 Wroclaw, Poland
| | - Michał Karoluk
- Faculty of Mechanical Engineering, Department of Laser Technologies, Automation and Production Organization, Wrocław University of Science and Technology, Ignacego Łukasiewicza 5, 50-371 Wroclaw, Poland
| | - Mariusz Frankiewicz
- Faculty of Mechanical Engineering, Department of Laser Technologies, Automation and Production Organization, Wrocław University of Science and Technology, Ignacego Łukasiewicza 5, 50-371 Wroclaw, Poland
| | - Paweł Migdał
- Department of Bees Breeding, Institute of Animal Husbandry and Breeding, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland
| | - Konrad Szustakiewicz
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Tomasz Matys
- The Department and Clinic of Angiology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Adam Junka
- "P.U.M.A.", Platform for Unique Model Application, Department of Pharmacy, Wroclaw Medical University, Borowska 211, 50-534 Wroclaw, Poland
| |
Collapse
|
2
|
Charisi K, Galanis I, Zarras C, Totikidis G, Kouroupis D, Massa E, Michailidou C, Goumperi S, Kosmidou E, Alektoridou C, Vlachakis D, Mouloudi E, Pateinakis P, Pyrpasopoulou A, Antachopoulos C. Impact of a Polyhexanide-based Antiseptic Skin Solution on Candida auris Colonization and Invasive Fungemia. J Hosp Infect 2024:S0195-6701(24)00373-6. [PMID: 39547537 DOI: 10.1016/j.jhin.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/06/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Affiliation(s)
| | - Ioannis Galanis
- 2(nd) Department of Propaedeutic Surgery, Aristotle University of Thessaloniki, Greece.
| | | | | | | | - Eleni Massa
- Intensive Care Unit, Hippokration Hospital Thessaloniki, Greece.
| | | | - Styliani Goumperi
- Infectious Diseases Unit, Hippokration Hospital Thessaloniki, Greece.
| | - Efterpi Kosmidou
- Infectious Diseases Unit, Hippokration Hospital Thessaloniki, Greece.
| | | | | | - Eleni Mouloudi
- Intensive Care Unit, Hippokration Hospital Thessaloniki, Greece.
| | | | | | | |
Collapse
|
3
|
Michalski J, Cłapa T, Narożna D, Syguda A, van Oostrum P, Reimhult E. Morpholinium-based Ionic Liquids as Potent Antibiofilm and Sensitizing Agents for the Control of Pseudomonas aeruginosa. J Mol Biol 2024; 436:168627. [PMID: 38795768 DOI: 10.1016/j.jmb.2024.168627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Rising antimicrobial resistance is a critical threat to worldwide public health. To address the increasing antibiotic tolerance, diverse antimicrobial agents are examined for their ability to decrease bacterial resistance. One of the most relevant and persistent human pathogens is Pseudomonas aeruginosa. Our study investigates the anti-biofilm and sensitizing activity of 12 morpholinium-based ionic liquids with herbicidal anions on four clinically relevant P. aeruginosa strains. Among all tested compounds, four ionic liquids prevented biofilm formation at sub-minimum inhibitory concentrations for all investigated strains. For the first time, we established a hormetic effect on biofilm formation for P. aeruginosa strains subjected to an ionic liquid treatment. Interestingly, while ionic liquids with 4,4-didecylmorpholinium [Dec2Mor]+ are more efficient against planktonic bacteria, 4-decyl-4-ethylmorpholinium [DecEtMor]+ showed more potent inhibition of biofilm formation. Ionic liquids with 4,4-didecylmorpholinium ([Dec2Mor]+) cations even induced biofilm formation by strain 39016 at high concentrations due to flocculation. Morpholinium-based ionic liquids were also shown to enhance the efficacy of commonly used antibiotics from different chemical groups. We demonstrate that this synergy is associated with the mode of action of the antibiotics.
Collapse
Affiliation(s)
- Jakub Michalski
- Poznań University of Life Sciences, Department of Biochemistry and Biotechnology, Dojazd 11, 60-632 Poznan, Poland
| | - Tomasz Cłapa
- Poznań University of Life Sciences, Department of Biochemistry and Biotechnology, Dojazd 11, 60-632 Poznan, Poland.
| | - Dorota Narożna
- Poznań University of Life Sciences, Department of Biochemistry and Biotechnology, Dojazd 11, 60-632 Poznan, Poland
| | - Anna Syguda
- Poznan University of Technology, Department of Chemical Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Peter van Oostrum
- BOKU University, Department of Bionanosciences, Institute of Colloid and Biointerface Science, Muthgasse 11-II, A-1090 Vienna, Austria
| | - Erik Reimhult
- BOKU University, Department of Bionanosciences, Institute of Colloid and Biointerface Science, Muthgasse 11-II, A-1090 Vienna, Austria
| |
Collapse
|
4
|
Dzięgielewska M, Bartoszewicz M, Książczyk M, Dudek B, Brożyna M, Szymczyk-Ziółkowska P, Gruber P, Pawlak J, Kozłowska W, Zielińska S, Fischer J, Woytoń A, Junka A. Abietic Acid as a Novel Agent against Ocular Biofilms: An In Vitro and Preliminary In Vivo Investigation. Int J Mol Sci 2024; 25:1528. [PMID: 38338807 PMCID: PMC10855443 DOI: 10.3390/ijms25031528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Biofilm-related ocular infections can lead to vision loss and are difficult to treat with antibiotics due to challenges with application and increasing microbial resistance. In turn, the design and testing of new synthetic drugs is a time- and cost-consuming process. Therefore, in this work, for the first time, we assessed the in vitro efficacy of the plant-based abietic acid molecule, both alone and when introduced to a polymeric cellulose carrier, against biofilms formed by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans in standard laboratory settings as well as in a self-designed setting using the topologically challenging surface of the artificial eye. These analyses were performed using the standard microdilution method, the biofilm-oriented antiseptic test (BOAT), a modified disk-diffusion method, and eyeball models. Additionally, we assessed the cytotoxicity of abietic acid against eukaryotic cell lines and its anti-staphylococcal efficacy in an in vivo model using Galleria mellonella larvae. We found that abietic acid was more effective against Staphylococcus than Pseudomonas (from two to four times, depending on the test applied) and that it was generally more effective against the tested bacteria (up to four times) than against the fungus C. albicans at concentrations non-cytotoxic to the eukaryotic cell lines and to G. mellonella (256 and 512 µg/mL, respectively). In the in vivo infection model, abietic acid effectively prevented the spread of staphylococcus throughout the larvae organisms, decreasing their lethality by up to 50%. These initial results obtained indicate promising features of abietic acid, which may potentially be applied to treat ocular infections caused by pathogenic biofilms, with higher efficiency manifested against bacterial than fungal biofilms.
Collapse
Affiliation(s)
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-367 Wroclaw, Poland;
| | - Marta Książczyk
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, 51-148 Wroclaw, Poland;
| | - Bartłomiej Dudek
- Platform for Unique Model Application, Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-367 Wroclaw, Poland; (M.B.); (A.W.)
| | - Malwina Brożyna
- Platform for Unique Model Application, Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-367 Wroclaw, Poland; (M.B.); (A.W.)
| | - Patrycja Szymczyk-Ziółkowska
- Center for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371 Wroclaw, Poland; (P.S.-Z.); (P.G.)
| | - Piotr Gruber
- Center for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371 Wroclaw, Poland; (P.S.-Z.); (P.G.)
| | - Jacek Pawlak
- Medical Department, Lazarski University, 02-662 Warsaw, Poland;
| | - Weronika Kozłowska
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biotechnology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (W.K.); (S.Z.)
| | - Sylwia Zielińska
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biotechnology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (W.K.); (S.Z.)
| | - Jędrzej Fischer
- Department of Angiology, Hypertension and Diabetology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Aleksandra Woytoń
- Platform for Unique Model Application, Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-367 Wroclaw, Poland; (M.B.); (A.W.)
| | - Adam Junka
- Platform for Unique Model Application, Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-367 Wroclaw, Poland; (M.B.); (A.W.)
| |
Collapse
|
5
|
Paleczny J, Brożyna M, Dudek B, Woytoń A, Chodaczek G, Szajnik M, Junka A. Culture Shock: An Investigation into the Tolerance of Pathogenic Biofilms to Antiseptics in Environments Resembling the Chronic Wound Milieu. Int J Mol Sci 2023; 24:17242. [PMID: 38139071 PMCID: PMC10744066 DOI: 10.3390/ijms242417242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Credible assessment methods must be applied to evaluate antiseptics' in vitro activity reliably. Studies indicate that the medium for biofilm culturing should resemble the conditions present at the site of infection. We cultured S. aureus, S. epidermidis, P. aeruginosa, C. albicans, and E. coli biofilms in IVWM (In Vitro Wound Milieu)-the medium reflecting wound milieu-and were compared to the ones cultured in the laboratory microbiological Mueller-Hinton (MH) medium. We analyzed and compared crucial biofilm characteristics and treated microbes with polyhexamethylene biguanide hydrochloride (PHMB), povidone-iodine (PVP-I), and super-oxidized solution with hypochlorites (SOHs). Biofilm biomass of S. aureus and S. epidermidis was higher in IVWM than in MH medium. Microbes cultured in IVWM exhibited greater metabolic activity and thickness than in MH medium. Biofilm of the majority of microbial species was more resistant to PHMB and PVP-I in the IVWM than in the MH medium. P. aeruginosa displayed a two-fold lower MBEC value of PHMB in the IVWM than in the MH medium. PHMB was more effective in the IVWM than in the MH medium against S. aureus biofilm cultured on a biocellulose carrier (instead of polystyrene). The applied improvement of the standard in vitro methodology allows us to predict the effects of treatment of non-healing wounds with specific antiseptics.
Collapse
Affiliation(s)
- Justyna Paleczny
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| | - Malwina Brożyna
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| | - Bartłomiej Dudek
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| | - Aleksandra Woytoń
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Lukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland;
| | - Marta Szajnik
- Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland;
| | - Adam Junka
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| |
Collapse
|