1
|
Rojas D, Estrada R, Romero Y, Figueroa D, Quilcate C, Ganoza-Roncal JJ, Maicelo JL, Coila P, Alvarado W, Cayo-Colca IS. Sex-Induced Changes in Microbial Eukaryotes and Prokaryotes in Gastrointestinal Tract of Simmental Cattle. BIOLOGY 2024; 13:932. [PMID: 39596887 PMCID: PMC11591695 DOI: 10.3390/biology13110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
This study investigates gender-based differences in the gut microbiota of Simmental cattle, focusing on bacterial, archaeal, and fungal communities. Fecal samples were collected and analyzed using high-throughput sequencing, with taxonomic classification performed through the SILVA and UNITE databases. Alpha and beta diversity metrics were assessed, revealing significant differences in the diversity and composition of archaeal communities between males and females. Notably, females exhibited higher alpha diversity in archaea, while beta diversity analyses indicated distinct clustering of bacterial and archaeal communities by gender. The study also identified correlations between specific microbial taxa and hematological parameters, with Treponema and Methanosphaera showing gender-specific associations that may influence cattle health and productivity. These findings highlight the importance of considering gender in microbiota-related research and suggest that gender-specific management strategies could optimize livestock performance. Future research should explore the role of sex hormones in shaping these microbial differences.
Collapse
Affiliation(s)
- Diórman Rojas
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Richard Estrada
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Yolanda Romero
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Deyanira Figueroa
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Carlos Quilcate
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Jorge J. Ganoza-Roncal
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Jorge L. Maicelo
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (J.L.M.); (W.A.); (I.S.C.-C.)
| | - Pedro Coila
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, Puno 21001, Peru;
| | - Wigoberto Alvarado
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (J.L.M.); (W.A.); (I.S.C.-C.)
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (J.L.M.); (W.A.); (I.S.C.-C.)
| |
Collapse
|
2
|
Sey EA, Warris A. The gut-lung axis: the impact of the gut mycobiome on pulmonary diseases and infections. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae008. [PMID: 39193472 PMCID: PMC11316619 DOI: 10.1093/oxfimm/iqae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 08/29/2024] Open
Abstract
The gastrointestinal tract contains a diverse microbiome consisting of bacteria, fungi, viruses and archaea. Although these microbes usually reside as commensal organisms, it is now well established that higher abundance of specific bacterial or fungal species, or loss of diversity in the microbiome can significantly affect development, progression and outcomes in disease. Studies have mainly focused on the effects of bacteria, however, the impact of other microbes, such as fungi, has received increased attention in the last few years. Fungi only represent around 0.1% of the total gut microbial population. However, key fungal taxa such as Candida, Aspergillus and Wallemia have been shown to significantly impact health and disease. The composition of the gut mycobiome has been shown to affect immunity at distal sites, such as the heart, lung, brain, pancreas, and liver. In the case of the lung this phenomenon is referred to as the 'gut-lung axis'. Recent studies have begun to explore and unveil the relationship between gut fungi and lung immunity in diseases such as asthma and lung cancer, and lung infections caused by viruses, bacteria and fungi. In this review we will summarize the current, rapidly growing, literature describing the impact of the gut mycobiome on respiratory disease and infection.
Collapse
Affiliation(s)
- Emily A Sey
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, EX4 4QD, UK
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
3
|
Naik B, Sasikumar J, Das SP. From Skin and Gut to the Brain: The Infectious Journey of the Human Commensal Fungus Malassezia and Its Neurological Consequences. Mol Neurobiol 2024:10.1007/s12035-024-04270-w. [PMID: 38871941 DOI: 10.1007/s12035-024-04270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The human mycobiome encompasses diverse communities of fungal organisms residing within the body and has emerged as a critical player in shaping health and disease. While extensive research has focused on the skin and gut mycobiome, recent investigations have pointed toward the potential role of fungal organisms in neurological disorders. Among those fungal organisms, the presence of the commensal fungus Malassezia in the brain has created curiosity because of its commensal nature and primary association with the human skin and gut. This budding yeast is responsible for several diseases, such as Seborrheic dermatitis, Atopic dermatitis, Pityriasis versicolor, Malassezia folliculitis, dandruff, and others. However recent findings surprisingly show the presence of Malassezia DNA in the brain and have been linked to diseases like Alzheimer's disease, Parkinson's disease, Multiple sclerosis, and Amyotrophic lateral sclerosis. The exact role of Malassezia in these disorders is unknown, but its ability to infect human cells, travel through the bloodstream, cross the blood-brain barrier, and reside along with the lipid-rich neuronal cells are potential mechanisms responsible for pathogenesis. This also includes the induction of pro-inflammatory cytokines, disruption of the blood-brain barrier, gut-microbe interaction, and accumulation of metabolic changes in the brain environment. In this review, we discuss these key findings from studies linking Malassezia to neurological disorders, emphasizing the complex and multifaceted nature of these cases. Furthermore, we discuss potential mechanisms through which Malassezia might contribute to the development of neurological conditions. Future investigations will open up new avenues for our understanding of the fungal gut-brain axis and how it influences human behavior. Collaborative research efforts among microbiologists, neuroscientists, immunologists, and clinicians hold promise for unraveling the enigmatic connections between human commensal Malassezia and neurological disorders.
Collapse
Affiliation(s)
- Bharati Naik
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
4
|
Alshaarawy O, Balasubramanian G, Venkatesan T. Cannabis use in the United States and its impact on gastrointestinal health. Nutr Clin Pract 2024; 39:281-292. [PMID: 38142306 DOI: 10.1002/ncp.11111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/13/2023] [Accepted: 11/17/2023] [Indexed: 12/25/2023] Open
Abstract
In recent years, the legalization and social acceptability of cannabis use have increased in the United States. Concurrently, the prevalence of cannabis use has continued to rise, and cannabis products have diversified. There are growing concerns regarding the health effects of regular and high-potency cannabis use, and new research has shed light on its potentially negative effects. Here, we review evidence of the gastrointestinal (GI) effects of cannabis and cannabinoids. Dysregulation of the endocannabinoid system might contribute to various GI disorders, including irritable bowel syndrome and cyclic vomiting syndrome, and endocannabinoids have been found to regulate visceral sensation, nausea, vomiting, and the gut microbiome. Cannabis has been shown to have antiemetic properties, and the US Food and Drug Administration has approved cannabis-based medications for treating chemotherapy-induced nausea and vomiting. Yet, chronic heavy cannabis use has been linked to recurrent episodes of severe nausea and intractable vomiting (cannabinoid hyperemesis syndrome). Given the considerable heterogeneity in the scientific literature, it is unclear if cannabinoid hyperemesis syndrome is truly a distinct entity or a subtype of cyclic vomiting that is unmasked by heavy cannabis use and the associated dysregulation of the endocannabinoid system. The changes in cannabis legalization, availability, and public risk perceptions have outpaced research in this area and there is a need for robust, prospective, large-scale studies to understand the effects of cannabis use on GI health.
Collapse
Affiliation(s)
- Omayma Alshaarawy
- Department of Family Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Gokulakrishnan Balasubramanian
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Thangam Venkatesan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
5
|
Hong J, Fu T, Liu W, Du Y, Bu J, Wei G, Yu M, Lin Y, Min C, Lin D. An Update on the Role and Potential Molecules in Relation to Ruminococcus gnavus in Inflammatory Bowel Disease, Obesity and Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:1235-1248. [PMID: 38496006 PMCID: PMC10942254 DOI: 10.2147/dmso.s456173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Ruminococcus gnavus (R. gnavus) is a gram-positive anaerobe commonly resides in the human gut microbiota. The advent of metagenomics has linked R. gnavus with various diseases, including inflammatory bowel disease (IBD), obesity, and diabetes mellitus (DM), which has become a growing area of investigation. The initial focus of research primarily centered on assessing the abundance of R. gnavus and its potential association with disease presentation, taking into account variations in sample size, sequencing and analysis methods. However, recent investigations have shifted towards elucidating the underlying mechanistic pathways through which R. gnavus may contribute to disease manifestation. In this comprehensive review, we aim to provide an updated synthesis of the current literature on R. gnavus in the context of IBD, obesity, and DM. We critically analyze relevant studies and summarize the potential molecular mediators implicated in the association between R. gnavus and these diseases. Across numerous studies, various molecules such as methylation-controlled J (MCJ), glucopolysaccharides, ursodeoxycholic acid (UDCA), interleukin(IL)-10, IL-17, and capric acid have been proposed as potential contributors to the link between R. gnavus and IBD. Similarly, in the realm of obesity, molecules such as hydrogen peroxide, butyrate, and UDCA have been suggested as potential mediators, while glycine ursodeoxycholic acid (GUDCA) has been implicated in the connection between R. gnavus and DM. Furthermore, it is imperative to emphasize the necessity for additional studies to evaluate the potential efficacy of targeting pathways associated with R. gnavus as a viable strategy for managing these diseases. These findings have significantly expanded our understanding of the functional role of R. gnavus in the context of IBD, obesity, and DM. This review aims to offer updated insights into the role and potential mechanisms of R. gnavus, as well as potential strategies for the treatment of these diseases.
Collapse
Affiliation(s)
- Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Tingting Fu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Weizhen Liu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yu Du
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Junmin Bu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Guojian Wei
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Miao Yu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yanshan Lin
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Cunyun Min
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| |
Collapse
|
6
|
Vidal-Gallardo A, Méndez Benítez JE, Flores Rios L, Ochoa Meza LF, Mata Pérez RA, Martínez Romero E, Vargas Beltran AM, Beltran Hernandez JL, Banegas D, Perez B, Martinez Ramirez M. The Role of Gut Microbiome in the Pathogenesis and the Treatment of Inflammatory Bowel Diseases. Cureus 2024; 16:e54569. [PMID: 38516478 PMCID: PMC10957260 DOI: 10.7759/cureus.54569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is a chronic condition characterized by inflammation of the gastrointestinal tract. Its exact cause is unknown, but it's thought to result from a dysregulated immune response influenced by various factors, including changes in the intestinal microbiota, diet, lifestyle, and genetics. The gut microbiome, consisting of diverse microorganisms, plays a crucial role in maintaining physiological balance, with its disruption leading to inflammatory responses typical of IBD. Treatments primarily aim at symptom control, employing immunomodulators, corticosteroids, and newer approaches like probiotics, prebiotics, fecal transplants, and dietary modifications, all focusing on leveraging the microbiota's potential in disease management. These strategies aim to restore the delicate balance of the gut microbiome, typically altered in IBD, marked by a decrease in beneficial bacteria and an increase in harmful pathogens. This review underscores the importance of the gut microbiome in the pathogenesis and treatment of IBD, highlighting the shift towards personalized medicine and the necessity for further research in understanding the complex interactions between the gut microbiota, immune system, and genetics in IBD. It points to the potential of emerging treatments and the importance of a multifaceted approach in managing this complex and challenging disease.
Collapse
Affiliation(s)
| | | | | | - Luis F Ochoa Meza
- General Surgery, Hospital General ISSSTE Presidente General Lázaro Cárdenas, Chihuahua, MEX
| | - Rodrigo A Mata Pérez
- General Practice, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, MEX
| | | | | | | | - Douglas Banegas
- General Medicine, Universidad Nacional Autonoma de Honduras, San Pedro Sula, HND
| | - Brenda Perez
- Nutrition, Universidad ICEL, Ciudad de México, MEX
| | | |
Collapse
|
7
|
Liu C, Liu X, Li X. Causal relationship between gut microbiota and hidradenitis suppurativa: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1302822. [PMID: 38348190 PMCID: PMC10860757 DOI: 10.3389/fmicb.2024.1302822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Background Accumulating evidence suggests that alterations in gut microbiota composition are associated with the hidradenitis suppurativa (HS). However, the causal association between gut microbiota and HS remain undetermined. Methods We performed a bidirectional two-sample Mendelian randomization (MR) analysis using genome-wide association study summary data of gut microbiota and hidradenitis suppurativa from the MiBioGen consortium which concluded 18,340 individuals analyzed by the MiBioGen Consortium, comprising 211 gut microbiota. HS data were acquired from strictly defined HS data collected by FinnGenbiobank analysis, which included 211,548 European ancestors (409 HS patients, 211,139 controls). The inverse variance weighted method (IVW), weighted median (WME), simple model, weighted model, weighted median, and MR-Egger were used to determine the changes of HS pathogenic bacterial taxa, followed by sensitivity analysis including horizontal pleiotropy analysis. The MR Steiger test evaluated the strength of a causal association and the leave-one-out method assessed the reliability of the results. Additionally, a reverse MR analysis was carried out to seek for possible reverse causality. Results By combining the findings of all the MR steps, we identified four causal bacterial taxa, namely, Family XI, Porphyromonadaceae, Clostridium innocuum group and Lachnospira. The risk of HS might be positively associated with a high relative abundance of Clostridium innocuum group (Odds ratio, OR 2.17, p = 0.00038) and Lachnospira (OR 2.45, p = 0.017) but negatively associated with Family XI (OR 0.67, p = 0.049) and Porphyromonadaceae (OR 0.29, p = 0.014). There were no noticeable outliers, horizontal pleiotropy, or heterogeneity. Furthermore, there was no proof of reverse causation found in the reverse MR study. Conclusion This study indicates that Clostridium innocuum group and Lachnospira might have anti-protective effect on HS, whereas Family XI and Porphyromonadaceae might have a protective effect on HS. Our study reveals that there exists a beneficial or detrimental causal effect of gut microbiota composition on HS and offers potentially beneficial methods for therapy and avoidance of HS.
Collapse
Affiliation(s)
- Chengling Liu
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| | - Xingchen Liu
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin Li
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| |
Collapse
|
8
|
Gurung B, Stricklin M, Wang S. Gut Microbiota-Gut Metabolites and Clostridioides difficile Infection: Approaching Sustainable Solutions for Therapy. Metabolites 2024; 14:74. [PMID: 38276309 PMCID: PMC10819375 DOI: 10.3390/metabo14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is the most common hospital-acquired infection. With the combination of a high rate of antibiotic resistance and recurrence, it has proven to be a debilitating public health threat. Current treatments for CDI include antibiotics and fecal microbiota transplantation, which contribute to recurrent CDIs and potential risks. Therefore, there is an ongoing need to develop new preventative treatment strategies for CDI. Notably, gut microbiota dysbiosis is the primary risk factor for CDI and provides a promising target for developing novel CDI therapy approaches. Along with gut microbiota dysbiosis, a reduction in important gut metabolites like secondary bile acids and short-chain fatty acids (SCFAs) were also seen in patients suffering from CDI. In this review study, we investigated the roles and mechanisms of gut microbiota and gut microbiota-derived gut metabolites, especially secondary bile acids and SCFAs in CDI pathogenesis. Moreover, specific signatures of gut microbiota and gut metabolites, as well as different factors that can modulate the gut microbiota, were also discussed, indicating that gut microbiota modulators like probiotics and prebiotics can be a potential therapeutic strategy for CDI as they can help restore gut microbiota and produce gut metabolites necessary for a healthy gut. The understanding of the associations between gut microbiota-gut metabolites and CDI will allow for developing precise and sustainable approaches, distinct from antibiotics and fecal transplant, for mitigating CDI and other gut microbiota dysbiosis-related diseases.
Collapse
Affiliation(s)
- Bijay Gurung
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (B.G.); (M.S.)
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | - Maranda Stricklin
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (B.G.); (M.S.)
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA
| | - Shaohua Wang
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (B.G.); (M.S.)
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
9
|
Reasoner SA, Nicholson MR. Clostridioides difficile Infection in Pediatric Inflammatory Bowel Disease. Curr Gastroenterol Rep 2023; 25:316-322. [PMID: 37646895 PMCID: PMC10843265 DOI: 10.1007/s11894-023-00890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE OF REVIEW Children with inflammatory bowel disease (IBD) are at increased risk of C. difficile infection (CDI) and experience worse outcomes associated with an infection. In this article, we review recent research on the incidence, diagnosis, complications, and treatment options for CDI in children with IBD. RECENT FINDINGS Children with IBD have an elevated incidence of CDI, but their CDI risk does not associate with established risk factors in adults with IBD. Existing testing methodologies are inadequate at differentiating CDI from C. difficile colonization in children with IBD. Fecal microbiota transplantation offers a durable cure for recurrent CDI. CDI remains a frequent occurrence in children with IBD. Careful clinical monitoring should be used to diagnose CDI and patients with co-occurring IBD and CDI require careful surveillance for worse outcomes. Future research should explore the optimal diagnosis and treatment modalities in this unique patient population.
Collapse
Affiliation(s)
- Seth A Reasoner
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maribeth R Nicholson
- Immunology & Inflammation (VI4), Vanderbilt Institute for Infection, Vanderbilt University Medical Center, Nashville, TN, USA.
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Monroe Carrell Junior Children's Hospital at Vanderbilt, Nashville, TN, USA.
| |
Collapse
|
10
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|