1
|
Mohamed RAE, Moustafa NM, Mahmoud FM, Elsaadawy YS, Aziz HSA, Gaber SAB, Hussin AM, Seadawy MG. Whole-genome sequencing of two multidrug-resistant acinetobacter baumannii strains isolated from a neonatal intensive care unit in Egypt: a prospective cross-sectional study. BMC Microbiol 2024; 24:362. [PMID: 39306657 PMCID: PMC11415996 DOI: 10.1186/s12866-024-03482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Acinetobacter baumannii (A. baumannii) is a life-threatening and challenging pathogen. In addition, it accounts for numerous serious infections, particularly among immunocompromised patients. Resistance to nearly all clinically used antibiotics and their ability to spread this resistance is one of the most important concerns related to this bacterium. OBJECTIVES This study describes different molecular mechanisms of two multidrug-resistant A. baumannii isolates obtained from endotracheal aspirates collected from the neonatal intensive care unit (NICU), Ain Shams University Hospital, Egypt. METHODS Following the identification of two isolates, they were examined for susceptibility to antimicrobial agents. This was followed by multilocus sequence typing as well as whole-genome sequence (WGS). Additionally, a Pathosystems Resources Integration Center (PATRIC) analysis was performed. RESULTS Two isolates, Ab119 and Ab123, exhibited resistance to all tested antibiotics except for tigecycline and colistin. The WGS analysis of antimicrobial resistance genes (AMR) indicated that both isolates shared beta-lactam, aminoglycoside, macrolides, and sulfonamide resistance genes. Furthermore, each strain revealed different resistance genes such as blaNDM-1, blaNDM-10, OXA-64, aph (3')-VI, Tet-B in Ab119 strain and blaOXA-68, blaPER-1, blaPER-7, Tet-39 in Ab123 strain. Multiple efflux pump genes were detected. Multilocus sequence typing indicated that both isolates belong to the same sequence type (ST931), which belongs to international clone (IC3). Both isolates exhibited the presence of multiple mobile genetic elements (MGEs), but no plasmid was detected in either of them. CONCLUSIONS A low prevalence of the IC3 sequence type was identified among two A. baumannii isolates obtained from the NICU in Egypt, exhibiting a high resistance level. Healthcare workers must have knowledge regarding the prevalence of A. baumannii among different populations in order to administer suitable treatment, improve patient outcomes, and apply effective infection control practices.
Collapse
Affiliation(s)
- Rania Alam Eldin Mohamed
- Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nouran Magdy Moustafa
- Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Basic Medical Science Department, College of Medicine, Dar Al Uloom University, Riyadh, Saudi Arabia
| | - Fatma Mostafa Mahmoud
- Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yara Said Elsaadawy
- Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Heba Sherif Abdel Aziz
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | | | | - Mohamed G Seadawy
- Biodefense Center for Infectious and Emerging Diseases, Ministry of Defense, Cairo, Egypt
| |
Collapse
|
2
|
Saikia S, Gogoi I, Oloo A, Sharma M, Puzari M, Chetia P. Co-production of metallo-β-lactamase and OXA-type β-lactamases in carbapenem-resistant Acinetobacter baumannii clinical isolates in North East India. World J Microbiol Biotechnol 2024; 40:167. [PMID: 38630176 DOI: 10.1007/s11274-024-03977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Carbapenem-resistant Acinetobacter baumannii poses a significant threat to public health globally, especially due to its ability to produce multiple carbapenemases, leading to treatment challenges. This study aimed to investigate the antibiotic resistance pattern of carbapenem-resistant A. baumannii isolates collected from different clinical settings in North East India, focusing on their genotypic and phenotypic resistance profiles. A total of 172 multidrug-resistant A. baumannii isolates were collected and subjected to antibiotic susceptibility test using the Kirby-Bauer disk diffusion method. Various phenotypic tests were performed to detect extended-spectrum β-lactamase (ESBL), metallo-β-lactamase (MBL), class C AmpC β-lactamase (AmpC), and carbapenem hydrolyzing class D β-lactamase (CHDL) production among the isolates. Overexpression of carbapenemase and cephalosporinase genes was detected among the isolates through both phenotypic and genotypic investigation. The antibiotic resistance profile of the isolates revealed that all were multidrug-resistant; 25% were extensively drug-resistant, 9.30% were pan-drug-resistant, whereas 91.27% were resistant to carbapenems. In the genotypic investigation, 80.81% of isolates were reported harbouring at least one metallo-β-lactamase encoding gene, with blaNDM being the most prevalent at 70.34%, followed by blaIMP at 51.16% of isolates. Regarding class D carbapenemases, blaOXA-51 and blaOXA-23 genes were detected in all the tested isolates, while blaOXA-24, blaOXA-48, and blaOXA-58 were found in 15.11%, 6.97%, and 1.74% isolates respectively. Further analysis showed that 31.97% of isolates co-harboured ESBL, MBL, AmpC, and CHDL genes, while 31.39% of isolates co-harboured ESBL, MBL, and CHDL genes with or without ISAba1 leading to extensively drug-resistant or pan drug-resistant phenotypes. This study highlights the complex genetic profile and antimicrobial-resistant pattern of the isolates circulating in North East India, emphasizing the urgent need for effective infection control measures and the development of alternative treatment strategies to combat these challenging pathogens.
Collapse
Affiliation(s)
- Shyamalima Saikia
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Indrani Gogoi
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Amos Oloo
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Mohan Sharma
- Integrated Molecular Diagnostic and Research Laboratory (BSL-2), District Hospital Tuensang, Tuensang, Nagaland, 798612, India
| | - Minakshi Puzari
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Pankaj Chetia
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
3
|
Raddaoui A, Mabrouk A, Chebbi Y, Frigui S, Salah Abbassi M, Achour W, Thabet L. Co-occurrence of blaNDM-1 and blaOXA-23 in carbapenemase-producing Acinetobacter baumannii belonging to high-risk lineages isolated from burn patients in Tunisia. J Appl Microbiol 2024; 135:lxae039. [PMID: 38346864 DOI: 10.1093/jambio/lxae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/10/2024] [Accepted: 02/09/2024] [Indexed: 03/21/2024]
Abstract
AIMS Carbapenem-resistant Acinetobacter baumannii (CR-Ab) is an important cause of infections in burn patients. This study aimed to characterize the antimicrobial susceptibility pattern of CR-Ab isolated from burns in Burn Intensive Care Unit (BICU) of the Trauma and Burn Centre of Ben Arous, to determine the prevalence of β-lactamase-encoding genes and to search eventual genetic relatedness of CR-Ab strains. METHODS AND RESULTS From 15 December 2016 to 2 April 2017, all nonduplicated CR-Ab isolated in burn patients in the BICU were screened by simplex Polymerase Chain Reaction (PCR) for the class A, B, C, and D β-lactamase genes. Sequencing was performed for NDM gene only. Genetic relatedness was determined by using pulsed field gel electrophoresis (PFGE) and by multilocus sequence typing. During the study period, 34 strains of CR-Ab were isolated in burns, mainly in blood culture (n = 14) and central vascular catheter (n = 10). CR-Ab strains were susceptible to colistin but resistant to amikacin (91%), ciprofloxacin (100%), rifampicin (97%), and trimethoprim-sulfamethoxazole (100%). All strains harbored blaOXA-51-like and blaOXA-23 genes, only or associated to blaGES (n = 26; 76%), blaADC (n = 20; 59%), blaPER-1 (n = 6; 18%) or/and blaNDM-1 (n = 3; 9%). PFGE identified 16 different clusters and revealed that most strains belonged to one major cluster A (n = 15; 44.1%). Among NDM-1 isolates, two were clonally related in PFGE and belonged to two single locus variant sequence type ST-6 and ST-85. CONCLUSIONS This is the first description of clonally related NDM-1 and OXA-23-producing A. baumannii strains in the largest Tunisian BICU associated with two single locus variant sequence types ST6 and ST85.
Collapse
Affiliation(s)
- Anis Raddaoui
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Aymen Mabrouk
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Yosra Chebbi
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Siwar Frigui
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Mohamed Salah Abbassi
- Faculty of Medicine of Tunis, Laboratory of Antibiotic Resistance LR99ES09, University of Tunis El Manar, 1006 Tunis, Tunisia
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Wafa Achour
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Lamia Thabet
- Laboratory Ward, Traumatology and Great Burned Center, 2074 Ben Arous, Tunisia
| |
Collapse
|
4
|
Sánchez-Urtaza S, Ocampo-Sosa A, Rodríguez-Grande J, El-Kholy MA, Shawky SM, Alkorta I, Gallego L. Plasmid content of carbapenem resistant Acinetobacter baumannii isolates belonging to five International Clones collected from hospitals of Alexandria, Egypt. Front Cell Infect Microbiol 2024; 13:1332736. [PMID: 38264728 PMCID: PMC10803598 DOI: 10.3389/fcimb.2023.1332736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Multidrug resistant Acinetobacter baumannii is one of the most important nosocomial pathogens worldwide. During the last decades it has become a major threat for healthcare settings due to the high antibiotic resistance rates among these isolates. Many resistance determinants are coded by conjugative or mobilizable plasmids, facilitating their dissemination. The majority of plasmids harbored by Acinetobacter species are less than 20 Kb, however, high molecular weight elements are the most clinically relevant since they usually contain antibiotic resistance genes. The aim of this work was to describe, classify and determine the genetic content of plasmids harbored by carbapem resistant A. baumannii isolates belonging to predominant clonal lineages circulating in hospitals from Alexandria, Egypt. The isolates were subjected to S1-Pulsed Field Gel Electrophoresis experiments to identify high molecular weight plasmids. To further analyze the plasmid content and the genetic localization of the antibiotic resistance genes, isolates were sequenced by Illumina Miseq and MinION Mk1C and a hybrid assembly was performed using Unicycler v0.5.0. Plasmids were detected with MOBsuite 3.0.3 and Copla.py v.1.0 and mapped using the online software Proksee.ca. Replicase genes were further analyzed through a BLAST against the Acinetobacter Plasmid Typing database. Eleven plasmids ranging in size from 4.9 to 205.6 Kb were characterized and mapped. All isolates contained plasmids, and, in many cases, more than two elements were identified. Antimicrobial resistance genes such as bla OXA-23, bla GES-like, aph(3')-VI and qacEΔ1 were found in likely conjugative large plasmids; while virulence determinants such as septicolysin or TonB-dependent receptors were identified in plasmids of small size. Some of these resistance determinants were, in turn, located within transposons and class 1 integrons. Among the identified plasmids, the majority encoded proteins belonging to the Rep_3 family, but replicases of the RepPriCT_1 (Aci6) family were also identified. Plasmids are of high interest as antibiotic resistance control tools, since they may be used as genetic markers for antibiotic resistance and virulence, and also as targets for the development of compounds that can inhibit transfer processes.
Collapse
Affiliation(s)
- Sandra Sánchez-Urtaza
- Laboratory of Antibiotics and Molecular Bacteriology, Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| | - Alain Ocampo-Sosa
- Microbiology Service, University Hospital Marqués de Valdecilla, Health Research Institute (IDIVAL), Santander, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Rodríguez-Grande
- Microbiology Service, University Hospital Marqués de Valdecilla, Health Research Institute (IDIVAL), Santander, Spain
| | - Mohammed A. El-Kholy
- Department of Microbiology and Biotechnology, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology & Maritime Transport (AASTMT), Alexandria, Egypt
| | - Sherine M. Shawky
- Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Lucia Gallego
- Laboratory of Antibiotics and Molecular Bacteriology, Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| |
Collapse
|
5
|
Castillo-Ramírez S. Genomic epidemiology of Acinetobacter baumannii goes global. mBio 2023; 14:e0252023. [PMID: 37909743 PMCID: PMC10746248 DOI: 10.1128/mbio.02520-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Acinetobacter baumannii is a major public health concern, for which many genomic epidemiology studies have been conducted in the last decade. However, the vast majority of these are local studies focusing on hospitals from one or a few countries. Proper global genomic epidemiology studies are needed if we are to understand the worldwide dissemination of A. baumannii clones. In this regard, a recent study published in mBio is a good step forward. Müller et al. (mBio e2260-23, 2023, https://doi.org/10.1128/mbio.02260-23) sequenced the genomes of 313 carbapenem-resistant A. baumannii isolates from over 100 hospitals in almost 50 countries from Africa, Asia, Europe, and The Americas. With this data set the authors provide an updated view of the global distribution of the major international clones and their carbapenemase genes. Future global genomic epidemiology studies can be enhanced by considering not only human but also non-human isolates, and by considering isolates despite their antibiotic resistance profile.
Collapse
Affiliation(s)
- Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|