1
|
Zhang J, Zhang J, Jin J, Jiang X, Yang L, Fan S, Zhang Q, Chi M. Artificial intelligence applied in cardiovascular disease: a bibliometric and visual analysis. Front Cardiovasc Med 2024; 11:1323918. [PMID: 38433757 PMCID: PMC10904648 DOI: 10.3389/fcvm.2024.1323918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
Background With the rapid development of technology, artificial intelligence (AI) has been widely used in the diagnosis and prognosis prediction of a variety of diseases, including cardiovascular disease. Facts have proved that AI has broad application prospects in rapid and accurate diagnosis. Objective This study mainly summarizes the research on the application of AI in the field of cardiovascular disease through bibliometric analysis and explores possible future research hotpots. Methods The articles and reviews regarding application of AI in cardiovascular disease between 2000 and 2023 were selected from Web of Science Core Collection on 30 December 2023. Microsoft Excel 2019 was applied to analyze the targeted variables. VOSviewer (version 1.6.16), Citespace (version 6.2.R2), and a widely used online bibliometric platform were used to conduct co-authorship, co-citation, and co-occurrence analysis of countries, institutions, authors, references, and keywords in this field. Results A total of 4,611 articles were selected in this study. AI-related research on cardiovascular disease increased exponentially in recent years, of which the USA was the most productive country with 1,360 publications, and had close cooperation with many countries. The most productive institutions and researchers were the Cedar sinai medical center and Acharya, Ur. However, the cooperation among most institutions or researchers was not close even if the high research outputs. Circulation is the journal with the largest number of publications in this field. The most important keywords are "classification", "diagnosis", and "risk". Meanwhile, the current research hotpots were "late gadolinium enhancement" and "carotid ultrasound". Conclusions AI has broad application prospects in cardiovascular disease, and a growing number of scholars are devoted to AI-related research on cardiovascular disease. Cardiovascular imaging techniques and the selection of appropriate algorithms represent the most extensively studied areas, and a considerable boost in these areas is predicted in the coming years.
Collapse
Affiliation(s)
- Jirong Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jimei Zhang
- College of Public Health, The University of Sydney, NSW, Sydney, Australia
| | - Juan Jin
- The First Department of Cardiovascular, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, HL, China
| | - Xicheng Jiang
- College of basic medicine, Heilongjiang University of Chinese Medicine, Harbin, HL, China
| | - Linlin Yang
- Cardiovascular Disease Branch, Dalian Second People's Hospital, Dalian, LN, China
| | - Shiqi Fan
- Harbin hospital of traditional Chinese medicine, Harbin, HL, China
| | - Qiao Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin, HL, China
| | - Ming Chi
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Di Costanzo A, Spaccarotella CAM, Esposito G, Indolfi C. An Artificial Intelligence Analysis of Electrocardiograms for the Clinical Diagnosis of Cardiovascular Diseases: A Narrative Review. J Clin Med 2024; 13:1033. [PMID: 38398346 PMCID: PMC10889404 DOI: 10.3390/jcm13041033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Artificial intelligence (AI) applied to cardiovascular disease (CVD) is enjoying great success in the field of scientific research. Electrocardiograms (ECGs) are the cornerstone form of examination in cardiology and are the most widely used diagnostic tool because they are widely available, inexpensive, and fast. Applications of AI to ECGs, especially deep learning (DL) methods using convolutional neural networks (CNNs), have been developed in many fields of cardiology in recent years. Deep learning methods provide valuable support for rapid ECG interpretation, demonstrating a diagnostic capability overlapping with specialists in the diagnosis of CVD by a classical analysis of macroscopic changes in the ECG trace. Through photoplethysmography, wearable devices can obtain single-derivative ECGs for the recognition of AI-diagnosed arrhythmias. In addition, CNNs have been developed that recognize no macroscopic electrocardiographic changes and can predict, from a 12-lead ECG, atrial fibrillation, even from sinus rhythm; left and right ventricular function; hypertrophic cardiomyopathy; acute coronary syndromes; or aortic stenosis. The fields of application are many, but numerous are the limitations, mainly associated with the reliability of the acquired data, an inability to verify black box processes, and medico-legal and ethical problems. The challenge of modern medicine is to recognize the limitations of AI and overcome them.
Collapse
Affiliation(s)
- Assunta Di Costanzo
- Division of Cardiology, Cardiovascular Research Center, University Magna Graecia Catanzaro, 88100 Catanzaro, Italy
| | - Carmen Anna Maria Spaccarotella
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples Federico II, 80126 Naples, Italy; (C.A.M.S.)
| | - Giovanni Esposito
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples Federico II, 80126 Naples, Italy; (C.A.M.S.)
| | - Ciro Indolfi
- Division of Cardiology, Cardiovascular Research Center, University Magna Graecia Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Raileanu G, de Jong JSSG. Electrocardiogram Interpretation Using Artificial Intelligence: Diagnosis of Cardiac and Extracardiac Pathologic Conditions. How Far Has Machine Learning Reached? Curr Probl Cardiol 2024; 49:102097. [PMID: 37739276 DOI: 10.1016/j.cpcardiol.2023.102097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Artificial intelligence (AI) is already widely used in different fields of medicine, making possible the integration of the paraclinical exams with the clinical findings in patients, for a more accurate and rapid diagnosis and treatment decision. The electrocardiogram remains one of the most important, fastest, cheapest, and noninvasive methods of diagnosis in cardiology, despite the rapid development and progression of the technology. Even if studied a long time ago, it still has a lot of less understood features that, with a better understanding, can give more clues to a correct and prompt diagnosis in a short time. The use of AI in the interpretation of the ECG improved the accuracy and the time to diagnosis in different cardiovascular diseases, and more than this, explaining the decision to make AI diagnosis improved the human understanding of the different features of the ECG that might be considered for a more accurate diagnosis. The purpose of this article is to provide an overview of the most recently published articles about the use of AI in ECG interpretation.
Collapse
Affiliation(s)
- Gabriela Raileanu
- Department of Cardiology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands.
| | - Jonas S S G de Jong
- Department of Cardiology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Kim SY, Lee JP, Shin WR, Oh IH, Ahn JY, Kim YH. Cardiac biomarkers and detection methods for myocardial infarction. Mol Cell Toxicol 2022; 18:443-455. [PMID: 36105117 PMCID: PMC9463516 DOI: 10.1007/s13273-022-00287-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 12/14/2022]
Abstract
Background A significant heart attack known as a myocardial infarction (MI) occurs when the blood supply to the heart is suddenly interrupted, harming the heart muscles due to a lack of oxygen. The incidence of myocardial infarction is increasing worldwide. A relationship between COVID-19 and myocardial infarction due to the recent COVID-19 pandemic has also been revealed. Objective We propose a biomarker and a method that can be used for the diagnosis of myocardial infarction, and an aptamer-based approach. Results For the diagnosis of myocardial infarction, an algorithm-based diagnosis method was developed using electrocardiogram data. A diagnosis method through biomarker detection was then developed. Conclusion Myocardial infarction is a disease that is difficult to diagnose based on the aspect of a single factor. For this reason, it is necessary to use a combination of various methods to diagnose myocardial infarction quickly and accurately. In addition, new materials such as aptamers must be grafted and integrated into new ways. Purpose of Review The incidence of myocardial infarction is increasing worldwide, and some studies are being conducted on the association between COVID-19 and myocardial infarction. The key to properly treating myocardial infarction is early detection, thus we aim to do this by offering both tools and techniques as well as the most recent diagnostic techniques. Recent Findings Myocardial infarction is diagnosed using an electrocardiogram and echocardiogram, which utilize cardiac signals. It is required to identify biomarkers of myocardial infarction and use biomarker-based ELISA, SPR, gold nanoparticle, and aptamer technologies in order to correctly diagnose myocardial infarction.
Collapse
Affiliation(s)
- Sang Young Kim
- Department of Food Science and Biotechnology, Shin Ansan University, 135 Sinansandaehak-Ro, Danwon-Gu, Ansan, 15435 Republic of Korea
| | - Jin-Pyo Lee
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - In-Hwan Oh
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| |
Collapse
|
5
|
Xiong P, Lee SMY, Chan G. Deep Learning for Detecting and Locating Myocardial Infarction by Electrocardiogram: A Literature Review. Front Cardiovasc Med 2022; 9:860032. [PMID: 35402563 PMCID: PMC8990170 DOI: 10.3389/fcvm.2022.860032] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
Myocardial infarction is a common cardiovascular disorder caused by prolonged ischemia, and early diagnosis of myocardial infarction (MI) is critical for lifesaving. ECG is a simple and non-invasive approach in MI detection, localization, diagnosis, and prognosis. Population-based screening with ECG can detect MI early and help prevent it but this method is too labor-intensive and time-consuming to carry out in practice unless artificial intelligence (AI) would be able to reduce the workload. Recent advances in using deep learning (DL) for ECG screening might rekindle this hope. This review aims to take stock of 59 major DL studies applied to the ECG for MI detection and localization published in recent 5 years, covering convolutional neural network (CNN), long short-term memory (LSTM), convolutional recurrent neural network (CRNN), gated recurrent unit (GRU), residual neural network (ResNet), and autoencoder (AE). In this period, CNN obtained the best popularity in both MI detection and localization, and the highest performance has been obtained from CNN and ResNet model. The reported maximum accuracies of the six different methods are all beyond 97%. Considering the usage of different datasets and ECG leads, the network that trained on 12 leads ECG data of PTB database has obtained higher accuracy than that on smaller number leads data of other datasets. In addition, some limitations and challenges of the DL techniques are also discussed in this review.
Collapse
Affiliation(s)
- Ping Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Ging Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
6
|
Park JE, Kim TY, Jung YJ, Han C, Park CM, Park JH, Park KJ, Yoon D, Chung WY. Biosignal-Based Digital Biomarkers for Prediction of Ventilator Weaning Success. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179229. [PMID: 34501829 PMCID: PMC8430549 DOI: 10.3390/ijerph18179229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022]
Abstract
We evaluated new features from biosignals comprising diverse physiological response information to predict the outcome of weaning from mechanical ventilation (MV). We enrolled 89 patients who were candidates for weaning from MV in the intensive care unit and collected continuous biosignal data: electrocardiogram (ECG), respiratory impedance, photoplethysmogram (PPG), arterial blood pressure, and ventilator parameters during a spontaneous breathing trial (SBT). We compared the collected biosignal data's variability between patients who successfully discontinued MV (n = 67) and patients who did not (n = 22). To evaluate the usefulness of the identified factors for predicting weaning success, we developed a machine learning model and evaluated its performance by bootstrapping. The following markers were different between the weaning success and failure groups: the ratio of standard deviations between the short-term and long-term heart rate variability in a Poincaré plot, sample entropy of ECG and PPG, α values of ECG, and respiratory impedance in the detrended fluctuation analysis. The area under the receiver operating characteristic curve of the model was 0.81 (95% confidence interval: 0.70-0.92). This combination of the biosignal data-based markers obtained during SBTs provides a promising tool to assist clinicians in determining the optimal extubation time.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Pulmonology and Critical Care Medicine, Ajou University School of Medicine, Suwon 16499, Korea; (J.E.P.); (Y.J.J.); (J.H.P.); (K.J.P.)
| | | | - Yun Jung Jung
- Department of Pulmonology and Critical Care Medicine, Ajou University School of Medicine, Suwon 16499, Korea; (J.E.P.); (Y.J.J.); (J.H.P.); (K.J.P.)
| | - Changho Han
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yongin 16995, Korea; (C.H.); (C.M.P.)
| | - Chan Min Park
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yongin 16995, Korea; (C.H.); (C.M.P.)
| | - Joo Hun Park
- Department of Pulmonology and Critical Care Medicine, Ajou University School of Medicine, Suwon 16499, Korea; (J.E.P.); (Y.J.J.); (J.H.P.); (K.J.P.)
| | - Kwang Joo Park
- Department of Pulmonology and Critical Care Medicine, Ajou University School of Medicine, Suwon 16499, Korea; (J.E.P.); (Y.J.J.); (J.H.P.); (K.J.P.)
| | - Dukyong Yoon
- BUD.on Inc., Jeonju 54871, Korea;
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yongin 16995, Korea; (C.H.); (C.M.P.)
- Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin 16995, Korea
- Correspondence: (D.Y.); (W.Y.C.); Tel.: +82-31-5189-8450 (D.Y.); +82-31-219-5120 (W.Y.C.)
| | - Wou Young Chung
- Department of Pulmonology and Critical Care Medicine, Ajou University School of Medicine, Suwon 16499, Korea; (J.E.P.); (Y.J.J.); (J.H.P.); (K.J.P.)
- Correspondence: (D.Y.); (W.Y.C.); Tel.: +82-31-5189-8450 (D.Y.); +82-31-219-5120 (W.Y.C.)
| |
Collapse
|