1
|
Li T, Qian Y, Li H, Wang T, Jiang Q, Wang Y, Zhu Y, Li S, He X, Shi G, Su W, Lu Y, Chen Y. Cellular communication network factor 1 promotes retinal leakage in diabetic retinopathy via inducing neutrophil stasis and neutrophil extracellular traps extrusion. Cell Commun Signal 2024; 22:275. [PMID: 38755602 PMCID: PMC11097549 DOI: 10.1186/s12964-024-01653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major cause of blindness and is characterized by dysfunction of the retinal microvasculature. Neutrophil stasis, resulting in retinal inflammation and the occlusion of retinal microvessels, is a key mechanism driving DR. These plugging neutrophils subsequently release neutrophil extracellular traps (NETs), which further disrupts the retinal vasculature. Nevertheless, the primary catalyst for NETs extrusion in the retinal microenvironment under diabetic conditions remains unidentified. In recent studies, cellular communication network factor 1 (CCN1) has emerged as a central molecule modulating inflammation in pathological settings. Additionally, our previous research has shed light on the pathogenic role of CCN1 in maintaining endothelial integrity. However, the precise role of CCN1 in microvascular occlusion and its potential interaction with neutrophils in diabetic retinopathy have not yet been investigated. METHODS We first examined the circulating level of CCN1 and NETs in our study cohort and analyzed related clinical parameters. To further evaluate the effects of CCN1 in vivo, we used recombinant CCN1 protein and CCN1 overexpression for gain-of-function, and CCN1 knockdown for loss-of-function by intravitreal injection in diabetic mice. The underlying mechanisms were further validated on human and mouse primary neutrophils and dHL60 cells. RESULTS We detected increases in CCN1 and neutrophil elastase in the plasma of DR patients and the retinas of diabetic mice. CCN1 gain-of-function in the retina resulted in neutrophil stasis, NETs extrusion, capillary degeneration, and retinal leakage. Pre-treatment with DNase I to reduce NETs effectively eliminated CCN1-induced retinal leakage. Notably, both CCN1 knockdown and DNase I treatment rescued the retinal leakage in the context of diabetes. In vitro, CCN1 promoted adherence, migration, and NETs extrusion of neutrophils. CONCLUSION In this study, we uncover that CCN1 contributed to retinal inflammation, vessel occlusion and leakage by recruiting neutrophils and triggering NETs extrusion under diabetic conditions. Notably, manipulating CCN1 was able to hold therapeutic promise for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Ting Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yixia Qian
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Haicheng Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tongtong Wang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qi Jiang
- Department of Ocular Immunology & Uveitis, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510515, China
| | - Yuchan Wang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yanhua Zhu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shasha Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xuemin He
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Guojun Shi
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wenru Su
- Department of Ocular Immunology & Uveitis, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510515, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yanming Chen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
2
|
Crespo-Garcia S, Fournier F, Diaz-Marin R, Klier S, Ragusa D, Masaki L, Cagnone G, Blot G, Hafiane I, Dejda A, Rizk R, Juneau R, Buscarlet M, Chorfi S, Patel P, Beltran PJ, Joyal JS, Rezende FA, Hata M, Nguyen A, Sullivan L, Damiano J, Wilson AM, Mallette FA, David NE, Ghosh A, Tsuruda PR, Dananberg J, Sapieha P. Therapeutic targeting of cellular senescence in diabetic macular edema: preclinical and phase 1 trial results. Nat Med 2024; 30:443-454. [PMID: 38321220 DOI: 10.1038/s41591-024-02802-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Compromised vascular endothelial barrier function is a salient feature of diabetic complications such as sight-threatening diabetic macular edema (DME). Current standards of care for DME manage aspects of the disease, but require frequent intravitreal administration and are poorly effective in large subsets of patients. Here we provide evidence that an elevated burden of senescent cells in the retina triggers cardinal features of DME pathology and conduct an initial test of senolytic therapy in patients with DME. In cell culture models, sustained hyperglycemia provoked cellular senescence in subsets of vascular endothelial cells displaying perturbed transendothelial junctions associated with poor barrier function and leading to micro-inflammation. Pharmacological elimination of senescent cells in a mouse model of DME reduces diabetes-induced retinal vascular leakage and preserves retinal function. We then conducted a phase 1 single ascending dose safety study of UBX1325 (foselutoclax), a senolytic small-molecule inhibitor of BCL-xL, in patients with advanced DME for whom anti-vascular endothelial growth factor therapy was no longer considered beneficial. The primary objective of assessment of safety and tolerability of UBX1325 was achieved. Collectively, our data suggest that therapeutic targeting of senescent cells in the diabetic retina with a BCL-xL inhibitor may provide a long-lasting, disease-modifying intervention for DME. This hypothesis will need to be verified in larger clinical trials. ClinicalTrials.gov identifier: NCT04537884 .
Collapse
Affiliation(s)
- Sergio Crespo-Garcia
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
- École d'optométrie, University of Montreal, Montreal, Quebec, Canada
| | - Frédérik Fournier
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Roberto Diaz-Marin
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Sharon Klier
- UNITY Biotechnology, South San Francisco, CA, USA
| | - Derek Ragusa
- UNITY Biotechnology, South San Francisco, CA, USA
| | | | - Gael Cagnone
- Departments of Pediatrics Ophthalmology, and Pharmacology, Centre Hospitalier Universitaire Sainte Justine Research Center, Montreal, Quebec, Canada
| | - Guillaume Blot
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Ikhlas Hafiane
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Agnieszka Dejda
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Rana Rizk
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Rachel Juneau
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Manuel Buscarlet
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Sarah Chorfi
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | | | | | - Jean-Sebastien Joyal
- Departments of Pediatrics Ophthalmology, and Pharmacology, Centre Hospitalier Universitaire Sainte Justine Research Center, Montreal, Quebec, Canada
| | - Flavio A Rezende
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Masayuki Hata
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Alex Nguyen
- UNITY Biotechnology, South San Francisco, CA, USA
| | | | | | - Ariel M Wilson
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Frédérick A Mallette
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | - Przemyslaw Sapieha
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada.
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada.
- UNITY Biotechnology, South San Francisco, CA, USA.
| |
Collapse
|
3
|
Lu C, Lan Q, Song Q, Yu X. Identification and validation of ferroptosis-related genes for diabetic retinopathy. Cell Signal 2024; 113:110955. [PMID: 38084838 DOI: 10.1016/j.cellsig.2023.110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness, and ferroptosis may be an essential component of the pathological process of DR. In this study, we aimed to screen five hub genes (TLR4, CAV1, HMOX1, TP53, and IL-1B) using bioinformatics analysis and experimentally verify their expression and effects on ferroptosis and cell function. The online Gene Expression Omnibus microarray expression profiling datasets GSE60436 and GSE1025485 were selected for investigation. Ferroptosis-related genes that might be differentially expressed in DR were identified. Then, Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and protein-protein interaction (PPI) network analyses were conducted to characterize the differentially-expressed ferroptosis-related genes. After tissue-specific analyses and external dataset validation of hub genes, the mRNA and protein levels of hub genes in retinal microvascular endothelial cells (HRMECs) symbiotic with high glucose were verified using real-time quantitative PCR (qRT-PCR) and immunocytochemistry (ICC). Finally, hub genes were knocked down using siRNA, and changes in ferroptosis and cell function were observed. Based on the differential expression analysis, 19 ferroptosis-related genes were identified. GO and KEGG enrichment analyses showed that ferroptosis-related genes were significantly enriched in reactive oxygen species metabolic processes, necrotic cell death, hypoxia responses, iron ion responses, positive regulation of cell migration involved in sprouting angiogenesis, NF-kappa B signaling pathway, ferroptosis, fluid shear stress, and atherosclerosis. Subsequently, PPI network analysis and critical module construction were used to identify five hub genes. Based on bioinformatics analysis of mRNA microarrays, qRT-PCR confirmed higher mRNA expression of five genes in the DR model, and immunocytochemistry confirmed their higher protein expression. Finally, siRNA interference was used to verify the effects of five genes on ferroptosis and cell function. Based on bioinformatics analysis, five potential genes related to ferroptosis were identified, and their upregulation may affect the onset or progression of DR. This study sheds new light on the pathogenesis of DR.
Collapse
Affiliation(s)
- Changjin Lu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Qingxia Lan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Qiuyue Song
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Xiaoyi Yu
- Ophthalmic Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| |
Collapse
|
4
|
Liao Y, Huang S, Zhang Y, Zhang H, Zhao H. Decrease of Cellular Communication Network Factor 1 (CCN1) Attenuates PTZ-Kindled Epilepsy in Mice. Cell Mol Neurobiol 2023; 43:4279-4293. [PMID: 37864627 DOI: 10.1007/s10571-023-01420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/27/2023] [Indexed: 10/23/2023]
Abstract
To investigate the molecular mechanism of communication network factor 1 (CCN1) regulating pentylenetetrazol (PTZ)-induced epileptogenesis, deepen the understanding of epilepsy seizure pathogenesis, and provide new drug action targets for its clinical prevention and treatment. Differentially expressed genes (DEGs) on microarrays GSE47516 and GSE88992 were analyzed online using GEO2R. Pathway enrichment and protein-protein interaction network (PPI) analysis of DEGs were carried out using Metascape. Brain tissue samples of severe traumatic brain injury patients (named Healthy group) and refractory epilepsy patients (named Epilepsy group) were obtained and analyzed by qRT-PCR and immunohistochemistry (IHC) staining. A PTZ-induced epilepsy mouse model was established and verified. Morphological changes of neurons in mouse brain tissue were detected using hematoxylin and eosin (HE) staining. qRT-PCR was conducted to detect the mRNA expressions of apoptosis-associated proteins Bax, Caspase-3 and bcl2. TUNEL staining was performed to detect brain neuron apoptosis. The levels of myocardial enzymology, GSH, MDA and ROS in blood of mouse were detected by biochemical assay. CCN1 expression was increased in epilepsy brain tissue samples. CCN1 decreasing effectively prolongs seizure incubation period and decreases seizure duration. Silencing of CCN1 also reduces neuronal damage and apoptosis, decreases mRNA and protein expression of proapoptotic proteins Bax and Caspase-3, increases mRNA expression of antiapoptotic protein Bcl2. Moreover, decrease of CCN1 decreases myocardial enzymatic indexes CK and CK-MB levels, reduces myocardial tissue hemorrhage, and relieves oxidative stress response in hippocampal and myocardial tissue. CCN1 expression is increased in epileptic samples. CCN1 decreasing protects brain tissue by attenuating oxidative stress and inhibiting neuronal apoptosis triggered by PTZ injection, which probably by regulating Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Sha Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, 410008, China
| | - Yuhu Zhang
- Department of Emergency, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Honghai Zhang
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Haiting Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, 410008, China.
| |
Collapse
|
5
|
Lu X, Zhang M, Li G, Zhang S, Zhang J, Fu X, Sun F. Applications and Research Advances in the Delivery of CRISPR/Cas9 Systems for the Treatment of Inherited Diseases. Int J Mol Sci 2023; 24:13202. [PMID: 37686009 PMCID: PMC10487642 DOI: 10.3390/ijms241713202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The rapid advancements in gene therapy have opened up new possibilities for treating genetic disorders, including Duchenne muscular dystrophy, thalassemia, cystic fibrosis, hemophilia, and familial hypercholesterolemia. The utilization of the clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system has revolutionized the field of gene therapy by enabling precise targeting of genes. In recent years, CRISPR/Cas9 has demonstrated remarkable efficacy in treating cancer and genetic diseases. However, the susceptibility of nucleic acid drugs to degradation by nucleic acid endonucleases necessitates the development of functional vectors capable of protecting the nucleic acids from enzymatic degradation while ensuring safety and effectiveness. This review explores the biomedical potential of non-viral vector-based CRISPR/Cas9 systems for treating genetic diseases. Furthermore, it provides a comprehensive overview of recent advances in viral and non-viral vector-based gene therapy for genetic disorders, including preclinical and clinical study insights. Additionally, the review analyzes the current limitations of these delivery systems and proposes avenues for developing novel nano-delivery platforms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengying Sun
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.L.); (M.Z.); (G.L.); (S.Z.); (J.Z.); (X.F.)
| |
Collapse
|
6
|
Xiang ZY, Chen SL, Qin XR, Lin SL, Xu Y, Lu LN, Zou HD. Changes and related factors of blood CCN1 levels in diabetic patients. Front Endocrinol (Lausanne) 2023; 14:1131993. [PMID: 37334311 PMCID: PMC10273100 DOI: 10.3389/fendo.2023.1131993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Objective To study the differences in blood cellular communication network factor 1 (CCN1) levels between patients with diabetes mellitus (DM) and healthy individuals and to explore the relationship between CCN1 and diabetic retinopathy (DR). Methods Plasma CCN1 levels were detected using ELISA in 50 healthy controls, 74 patients with diabetes without diabetic retinopathy (DM group), and 69 patients with diabetic retinopathy (DR group). Correlations between CCN1 levels and age, body mass index, mean arterial pressure, hemoglobin A1c, and other factors were analyzed. The relationship between CCN1 expression and DR was explored using logistic regression after adjusting for confounding factors. Blood mRNA sequencing analysis was performed for all subjects, and the molecular changes that may be related to CCN1 were explored. The retinal vasculature of streptozotocin-induced diabetic rats was examined using fundus fluorescein angiography; in addition, retinal protein expression was examined using western blotting. Results Plasma CCN1 levels in patients with DR were significantly higher than in the control and DM groups; however, no significant differences were observed between healthy controls and patients with DM. CCN1 levels negatively correlated with body mass index and positively correlated with the duration of diabetes and urea levels. It was observed that high (OR 4.72, 95% CI: 1.10-20.25) and very high (OR 8.54, 95% CI: 2.00-36.51) levels of CCN1 were risk factors for DR. Blood mRNA sequencing analysis revealed that CCN1-related pathways were significantly altered in the DR group. The expression of hypoxia-, oxidative stress-, and dephosphorylation-related proteins were elevated, while that of tight junction proteins were reduced in the retinas of diabetic rats. Conclusion Blood CCN1 levels are significantly elevated in patients with DR. High and very high levels of plasma CCN1 are risk factors for DR. Blood CCN1 level may be a potential biomarker for diagnosis of DR. The effects of CCN1 on DR may be related to hypoxia, oxidative stress, and dephosphorylation.
Collapse
Affiliation(s)
- Zhao-Yu Xiang
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Shu-Li Chen
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Xin-Ran Qin
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Sen-Lin Lin
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Yi Xu
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Li-Na Lu
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Hai-Dong Zou
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| |
Collapse
|
7
|
Yeger H. CCN proteins: opportunities for clinical studies-a personal perspective. J Cell Commun Signal 2023:10.1007/s12079-023-00761-y. [PMID: 37195381 DOI: 10.1007/s12079-023-00761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
The diverse members of the CCN family now designated as CCN1(CYR61), CCN2 (CTGF), CCN3(NOV), CCN4(WISP1), CCN5(WISP2), CCN6(WISP3) are a conserved matricellular family of proteins exhibiting a spectrum of functional properties throughout all organs in the body. Interaction with cell membrane receptors such as integrins trigger intracellular signaling pathways. Proteolytically cleaved fragments (constituting the active domains) can be transported to the nucleus and perform transcriptional relevant functional activities. Notably, as also found in other protein families some members act opposite to others creating a system of functionally relevant checks and balances. It has become apparent that these proteins are secreted into the circulation, are quantifiable, and can serve as disease biomarkers. How they might also serve as homeostatic regulators is just becoming appreciated. In this review I have attempted to highlight the most recent evidence under the subcategories of cancer and non-cancer relevant that could lead to potential therapeutic approaches or ideas that can be factored into clinical advances. I have added my own personal perspective on feasibility.
Collapse
Affiliation(s)
- Herman Yeger
- Developmental and Stem Cell Biology, Research Institute, SickKids, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Ding N, Zheng C. Secreted frizzled-related protein 5 promotes angiogenesis of human umbilical vein endothelial cells and alleviates myocardial injury in diabetic mice with myocardial infarction by inhibiting Wnt5a/JNK signaling. Bioengineered 2022; 13:11656-11667. [PMID: 35506262 PMCID: PMC9275896 DOI: 10.1080/21655979.2022.2070964] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study is to investigate whether secreted frizzled-related protein 5 (SFRP5) affects the proliferation, migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) induced by high glucose (HG). HUVECs were treated with different concentrations of glucose. MTT, wound healing, angiogenesis, and ELISA assays were used to detect cell cytotoxicity, migration, tube formation, and VEGF165 and VEGF165b levels, respectively. The mice model of type 2 diabetes mellitus (T2DM) complicated with myocardial infarction (MI) was established. SFRP5 was injected intrabitoneally for 2 weeks. cardiac output (CO), left ventricular ejection fraction (LVEF) and left ventricular shortening fraction (LVSF) were detected by echocardiography. Western blot was used to detect the protein levels of SFRP5, Wnt5a, JNK1/2/3, p-JNK1/2/3, TGF-β1, Caspase3, Bax, and Bcl-2. The expression of SFRP5 was declined in HG-induced HUVECs and T2DM-MI. Intervention of SFRP5 promoted the migration of HUVECs and angiogenesis, as evidenced by a lower expression of Bax and caspase3, but a higher expression of Bcl-2. Meanwhile, SFRP5 inhibition repress Wnt5a and p-JNK expression. Howerver, The JNK inhibitor (SP600125) enhanced the down-regulation of Wnt5a/JNK pathway proteins by SFRP5. SFRP5 intervention increased the levels of CO, LVSF, and LVEF in T2DM-MI mice. SFRP5 inhibited myocardial pathological injury and fibrosis in T2DM-MI mice and SFRP5 could down-regulate Wnt5a and p-JNK1/2/3 activation. SFRP5 promotes the proliferation, migration and angiogenesis of HUVECs induced by HG, and inhibits cardiac dysfunction, pathological damage, fibrosis, and myocardial angiogenesis in diabetic myocardial ischemia mice, which is achieved by inhibiting Wnt5a/JNK signaling.
Collapse
Affiliation(s)
- Nian Ding
- Clinical College of Traditional Chinese medicine, Hubei University of Chinese Medicine, Wuhan, China.,Medical Ward, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Chenghong Zheng
- Clinical College of Traditional Chinese medicine, Hubei University of Chinese Medicine, Wuhan, China.,Medical Ward, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
9
|
Investigating the Mechanisms of Pollen Typhae in the Treatment of Diabetic Retinopathy Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5728408. [PMID: 35024051 PMCID: PMC8747905 DOI: 10.1155/2022/5728408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the main bioactive compounds and investigate the underlying mechanism of Pollen Typhae (PT) against diabetic retinopathy (DR) by network pharmacology and molecular docking analysis. METHODS Bioactive ingredients and the target proteins of PT were obtained from TCMSP, and the related target genes were acquired from the SwissTargetPrediction database. The target genes of DR were obtained from GeneCards, TTD database, DisGeNET database, and DrugBank. The compound-target interaction network was established based on Cytoscape 3.7.2. The protein-protein interaction (PPI) network was constructed via STRING database and Cytoscape 3.7.2. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were visualized through DAVID database and Bioinformatics. Ingredient-gene-pathway network analysis was conducted to further screen the ingredients, target proteins, and pathways closely related to the biological mechanism on PT for DR, and molecular docking analysis was performed by SYBYL-X 2.1.1 software. Finally, the mechanism and underlying targets of PT in the treatment of DR were predicted. RESULTS A total of 8 compounds and 171 intersection targets were obtained based on the online network database. 7 main compounds were screened from compound-target network, and 53 targets including the top six key targets (PTGS2, AKT1, VEGFA, MAPK3, TNF, and EGFR) were further acquired from PPI analysis. The 53 key targets covered 80 signaling pathways, among which PI3K-Akt signaling pathway, focal adhesion, Rap1 signaling pathway, VEGF signaling pathway, and HIF-1 signaling pathway were closely connected with the biological mechanism involved in the alleviation of DR by PT. Ingredient-gene-pathway network shows that AKTI, EGFR, and VEGFA were core genes, kaempferol and isorhamnetin were pivotal ingredients, and VEGF signaling pathway and Rap1 signaling pathway were closely involved in anti-DR. The docking results indicated that five main compounds (arachidonic acid, isorhamnetin, quercetin, kaempferol, and (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one) had good binding activity with EGFR and AKT1 targets. CONCLUSION The active ingredients in PT may regulate the levels of inflammatory factors, suppress the oxidative stress, and inhibit the proliferation, migration, and invasion of retinal pericytes by acting on PTGS2, AKT1, VEGFA, MAPK3, TNF, and EGFR targets through VEGF signaling pathway, PI3K-Akt signaling pathway, Rap1 signaling pathway, and HIF-1 signaling pathway to play a therapeutic role in diabetic retinopathy.
Collapse
|