1
|
Yang S, Kang J, Hwang D, Zhang J, Jiang J, Hu X, Hahn JY, Nam CW, Doh JH, Lee BK, Kim W, Huang J, Jiang F, Zhou H, Chen P, Tang L, Jiang W, Chen X, He W, Ahn SG, Yoon MH, Kim U, Lee JM, Ki YJ, Shin ES, Kim HS, Tahk SJ, Wang J, Koo BK. Physiology- or Imaging-Guided Strategies for Intermediate Coronary Stenosis. JAMA Netw Open 2024; 7:e2350036. [PMID: 38170524 PMCID: PMC10765263 DOI: 10.1001/jamanetworkopen.2023.50036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
Importance Treatment strategies for intermediate coronary lesions guided by fractional flow reserve (FFR) and intravascular ultrasonography (IVUS) have shown comparable outcomes. Identifying low-risk deferred vessels to ensure the safe deferral of percutaneous coronary intervention (PCI) and high-risk revascularized vessels that necessitate thorough follow-up can help determine optimal treatment strategies. Objectives To investigate outcomes according to treatment types and FFR and IVUS parameters after FFR- or IVUS-guided treatment. Design, Setting, and Participants This cohort study included patients with intermediate coronary stenosis from the Fractional Flow Reserve and Intravascular Ultrasound-Guided Intervention Strategy for Clinical Outcomes in Patients With Intermediate Stenosis (FLAVOUR) trial, an investigator-initiated, prospective, open-label, multicenter randomized clinical trial that assigned patients into an IVUS-guided strategy (which recommended PCI for minimum lumen area [MLA] ≤3 mm2 or 3 mm2 to 4 mm2 with plaque burden [PB] ≥70%) or an FFR-guided strategy (which recommended PCI for FFR ≤0.80). Data were analyzed from November to December 2022. Exposures FFR or IVUS parameters within the deferred and revascularized vessels. Main Outcomes and Measures The primary outcome was target vessel failure (TVF), a composite of cardiac death, target vessel myocardial infarction, and revascularization at 2 years. Results A total of 1619 patients (mean [SD] age, 65.1 [9.6] years; 1137 [70.2%] male) with 1753 vessels were included in analysis. In 950 vessels for which revascularization was deferred, incidence of TVF was comparable between IVUS and FFR groups (3.8% vs 4.1%; P = .72). Vessels with FFR greater than 0.92 in the FFR group and MLA greater than 4.5 mm2 or PB of 58% or less in the IVUS group were identified as low-risk deferred vessels, with a decreased risk of TVF (hazard ratio [HR], 0.25 [95% CI, 0.09-0.71]; P = .009). In 803 revascularized vessels, the incidence of TVF was comparable between IVUS and FFR groups (3.6% vs 3.7%; P = .95), which was similar in the revascularized vessels undergoing PCI optimization (4.2% vs 2.5%; P = .31). Vessels with post-PCI FFR of 0.80 or less in the FFR group or minimum stent area of 6.0 mm2 or less or with PB at stent edge greater than 58% in the IVUS group had an increased risk for TVF (HR, 7.20 [95% CI, 3.20-16.21]; P < .001). Conclusions and Relevance In this cohort study of patients with intermediate coronary stenosis, FFR- and IVUS-guided strategies showed comparable outcomes in both deferred and revascularized vessels. Binary FFR and IVUS parameters could further define low-risk deferred vessels and high-risk revascularized vessels.
Collapse
Affiliation(s)
- Seokhun Yang
- Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeehoon Kang
- Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Doyeon Hwang
- Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jinlong Zhang
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Jiang
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyang Hu
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | | | - Chang-Wook Nam
- Keimyung University Dongsan Medical Center, Daegu, Republic of Korea
| | - Joon-Hyung Doh
- Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Bong-Ki Lee
- Kangwon National University Hospital, Chuncheon, Gangwon-Do, Republic of Korea
| | - Weon Kim
- Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Jinyu Huang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Jiang
- Hangzhou Normal University Affiliated Hospital, Hangzhou, China
| | - Hao Zhou
- The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Chen
- The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Wenbing Jiang
- The Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou, China
| | | | - Wenming He
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Sung Gyun Ahn
- Wonju Severance Christian Hospital, Wonju, Gangwon-Do, Republic of Korea
| | | | - Ung Kim
- Yeungnam University Medical Center, Daegu, Republic of Korea
| | | | - You-Jeong Ki
- Uijeongbu Eulji Medical Center, Uijeongbu, Gyeonggi-Do, Republic of Korea
| | - Eun-Seok Shin
- Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Hyo-Soo Kim
- Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Jian’an Wang
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Bon-Kwon Koo
- Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Hwang D, Koo BK, Zhang J, Park J, Yang S, Kim M, Yun JP, Lee JM, Nam CW, Shin ES, Doh JH, Chen SL, Kakuta T, Toth GG, Piroth Z, Johnson NP, Pijls NHJ, Hakeem A, Uretsky BF, Hokama Y, Tanaka N, Lim HS, Ito T, Matsuo A, Azzalini L, Leesar MA, Neleman T, van Mieghem NM, Diletti R, Daemen J, Collison D, Collet C, De Bruyne B. Prognostic Implications of Fractional Flow Reserve After Coronary Stenting: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5:e2232842. [PMID: 36136329 PMCID: PMC9500557 DOI: 10.1001/jamanetworkopen.2022.32842] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
IMPORTANCE Fractional flow reserve (FFR) after percutaneous coronary intervention (PCI) is generally considered to reflect residual disease. Yet the clinical relevance of post-PCI FFR after drug-eluting stent (DES) implantation remains unclear. OBJECTIVE To evaluate the clinical relevance of post-PCI FFR measurement after DES implantation. DATA SOURCES MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials were searched for relevant published articles from inception to June 18, 2022. STUDY SELECTION Published articles that reported post-PCI FFR after DES implantation and its association with clinical outcomes were included. DATA EXTRACTION AND SYNTHESIS Patient-level data were collected from the corresponding authors of 17 cohorts using a standardized spreadsheet. Meta-estimates for primary and secondary outcomes were analyzed per patient and using mixed-effects Cox proportional hazard regression with registry identifiers included as a random effect. All processes followed the Preferred Reporting Items for Systematic Review and Meta-analysis of Individual Participant Data. MAIN OUTCOMES AND MEASURES The primary outcome was target vessel failure (TVF) at 2 years, a composite of cardiac death, target vessel myocardial infarction (TVMI), and target vessel revascularization (TVR). The secondary outcome was a composite of cardiac death or TVMI at 2 years. RESULTS Of 2268 articles identified, 29 studies met selection criteria. Of these, 28 articles from 17 cohorts provided data, including a total of 5277 patients with 5869 vessels who underwent FFR measurement after DES implantation. Mean (SD) age was 64.4 (10.1) years and 4141 patients (78.5%) were men. Median (IQR) post-PCI FFR was 0.89 (0.84-0.94) and 690 vessels (11.8%) had a post-PCI FFR of 0.80 or below. The cumulative incidence of TVF was 340 patients (7.2%), with cardiac death or TVMI occurring in 111 patients (2.4%) at 2 years. Lower post-PCI FFR significantly increased the risk of TVF (adjusted hazard ratio [HR] per 0.01 FFR decrease, 1.04; 95% CI, 1.02-1.05; P < .001). The risk of cardiac death or MI also increased inversely with post-PCI FFR (adjusted HR, 1.03; 95% CI, 1.00-1.07, P = .049). These associations were consistent regardless of age, sex, the presence of hypertension or diabetes, and clinical diagnosis. CONCLUSIONS AND RELEVANCE Reduced FFR after DES implantation was common and associated with the risks of TVF and of cardiac death or TVMI. These results indicate the prognostic value of post-PCI physiologic assessment after DES implantation.
Collapse
Affiliation(s)
- Doyeon Hwang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Jinlong Zhang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiesuck Park
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Seokhun Yang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Minsang Kim
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Jun Pil Yun
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Joo Myung Lee
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang-Wook Nam
- Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Eun-Seok Shin
- Division of Cardiology, Ulsan Hospital, Ulsan, Korea
| | - Joon-Hyung Doh
- Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Shao-Liang Chen
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tsunekazu Kakuta
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Gabor G. Toth
- University Heart Centre Graz, Medical University Graz, Austria
| | - Zsolt Piroth
- Gottsegen Hungarian Institute of Cardiology, Budapest, Hungary
| | - Nils P. Johnson
- Weatherhead PET Center For Preventing and Reversing Atherosclerosis, Division of Cardiology, Department of Medicine, University of Texas Medical School and Memorial Hermann Hospital, Houston
| | - Nico H. J. Pijls
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| | - Abdul Hakeem
- Division of Cardiovascular Diseases & Hypertension, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
- National Institute of Cardiovascular Diseases, Karachi, Pakistan
| | - Barry F. Uretsky
- Central Arkansas VA Health System, Little Rock, Arkansas
- University of Arkansas for Medical Sciences, Little Rock
| | - Yohei Hokama
- Department of Cardiology, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| | - Nobuhiro Tanaka
- Department of Cardiology, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| | - Hong-Seok Lim
- Department of Cardiology, Ajou University School of Medicine, Suwon, Korea
| | - Tsuyoshi Ito
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akiko Matsuo
- Department of Cardiology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Lorenzo Azzalini
- Division of Cardiology, Department of Medicine, University of Washington, Seattle
| | - Massoud A. Leesar
- Division of Cardiovascular Diseases, University of Alabama, Birmingham
| | - Tara Neleman
- Department of Interventional Cardiology, Thoraxcenter, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Nicolas M. van Mieghem
- Department of Interventional Cardiology, Thoraxcenter, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Roberto Diletti
- Department of Interventional Cardiology, Thoraxcenter, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Joost Daemen
- Department of Interventional Cardiology, Thoraxcenter, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Damien Collison
- West of Scotland Regional Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, United Kingdom
| | | | - Bernard De Bruyne
- Cardiovascular Center Aalst, Aalst, Belgium
- Department of Cardiology, University of Lausanne, Switzerland
| |
Collapse
|