1
|
Chen J, Chen G, Li J, Wang D, Liang W, Zhao S. NLRC5 in Macrophages Promotes Atherosclerosis in Acute Coronary Syndrome by Regulating STAT3 Expression. Cardiovasc Toxicol 2025:10.1007/s12012-024-09957-z. [PMID: 39833596 DOI: 10.1007/s12012-024-09957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
The mortality rate of cardiovascular and cerebrovascular diseases ranks first among all causes. This study elucidated the role and potential mechanism of the NLRC5 gene in atherosclerosis (AS). We enrolled patients (number = 30) diagnosed with AS and healthy volunteers (number = 30) as controls from our hospital. In patients with AS, the levels of serum NLRC5 were up-regulated (Fig. 1A) and positively correlated with CIMT/CRP. In a mouse model of AS, the expression of serum NLRC5 mRNA was increased at 6 or 12 weeks after inducing AS. The expression of NLRC5 protein was found to be elevated in a mouse model of AS. The inhibition of NLRC5 reduced development of AS in ApoE-/- Mice. Reducing NLRC5 inhibited the polarization of M2 macrophages and shifted macrophages towards proinflammatory M1 phenotype. STAT3 was identified as a target of NLRC5, with NLRC5 protein expression shown to reduce STAT3 ubiquitination. Methylation promoted NLRC5 DNA stability in vitro model of AS. Sh-NLRC5 increased M1/M2 macrophage ratio, foam cell formation and ox-LDL uptake. STAT3 reduced the effects of sh-NLRC5-mediated M1/M2 macrophage ratio in model of AS. These data confirmed that NLRC5 in macrophages promotes atherosclerosis in acute coronary syndrome by regulating STAT3 expression. This suggests that NLRC5 could be a potential target for the treatment of premature AS.
Collapse
Affiliation(s)
- Jun Chen
- Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, China.
| | - Guoqin Chen
- Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, China
| | - Jianhao Li
- Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, China
| | - Dayu Wang
- Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, China
| | - Weijie Liang
- Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, China
| | - Shanjun Zhao
- Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, China
| |
Collapse
|
2
|
Liu H, Ma X, Yang X, Xiao S, Ouyang S, Hu Z, Zhou Z, Jiang Z. E. coli Nissle 1917 improves gut microbiota composition and serum metabolites to counteract atherosclerosis via the homocitrulline/Caspase 1/NLRP3/GSDMD axis. Int J Med Microbiol 2024; 318:151642. [PMID: 39742694 DOI: 10.1016/j.ijmm.2024.151642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND The probiotic E. coli Nissle 1917 (EcN) alleviates the progression of various diseases, including colitis and tumors. However, EcN has not been studied in atherosclerosis. The study investigated the effects of EcN on atherosclerosis model mice and the potential mechanisms. METHODS Mice in the high-fat diet (HFD) model were given EcN (1 × 109 CFU/g) or homocitrulline (150 mg/L) by oral administration for 12 weeks. The EcN + antibiotic group was set up to investigate the effects of EcN combined with antibiotics on gut microbiota. The control group was utilized as the negative control. Atherosclerosis status, pyroptosis, gut microbiota, and serum metabolites of mice were examined. RESULTS EcN treatment alleviated HFD-caused atherosclerotic plaque and lipid droplet production. EcN treatment reversed HFD-induced increases in total cholesterol, triglycerides, and low-density lipoprotein levels and decreases in high-density lipoprotein levels. EcN inhibited the HFD-caused rise in the expression of pyroptosis-related indicators (cleaved Caspase 1, GSDMD-N, NLRP3, IL-18, and IL-1β). The antibiotics partially reversed the effects of EcN on the model mice, suggesting that EcN regulated pyroptosis in the model mice through gut microbiota. Probiotic bacteria, such as Lactobacillus and Muribaculum, were mainly enriched in the EcN and EcN + antibiotic groups, while Helicobacter, Alistipes, and Rikenella were depleted, suggesting that EcN and EcN + antibiotics could alleviate disorders of gut microbiota in the model mice. EcN reversed the trend of HFD-induced decrease of some metabolites, such as 2-methyl-5-nitroimidazole-1-ethanol, methionine sulfoxide, and shikimate 3-phosphate, and inhibited the increase of some metabolites, such as kynurenine, oxoadipate, and homocitrulline. In addition, homocitrulline showed the opposite effects of EcN in the model mice. Homocitrulline could bind to pyroptosis-related proteins to aggravate ox-LDL-induced endothelial cell pyroptosis. CONCLUSION EcN could alleviate atherosclerosis development by ameliorating HFD-induced disorders of gut microbiota and serum metabolites (such as homocitrulline) to alleviate pyroptosis, which may be associated with homocitrulline/Caspase 1/NLRP3/GSDMD axis. Our study lays the foundation for the development of promising drugs for atherosclerosis in the future.
Collapse
Affiliation(s)
- Huan Liu
- Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China; Department of Cardiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaofeng Ma
- Department of Cardiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xuefeng Yang
- Department of Gastroenterology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, University of South China, Hengyang, Hunan 421001, China
| | - Sujun Xiao
- Department of Cardiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shao Ouyang
- Department of Cardiology, the Second Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhihao Hu
- Department of Cardiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhixiang Zhou
- Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Zhisheng Jiang
- Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Wu X, Li J, Sun G, Yang J, Peng Y, Bai X, Wang L. Role of LncRNAs in the Pathogenesis of Coronary Artery Disease. Rev Cardiovasc Med 2023; 24:96. [PMID: 39076276 PMCID: PMC11273030 DOI: 10.31083/j.rcm2404096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 07/31/2024] Open
Abstract
Coronary artery disease (CAD), caused by coronary artery occlusion, is a common cardiovascular disease worldwide. Long non-coding RNAs (lncRNAs) are implicated in the regulation of endothelial cell injury, angiogenesis, plaque formation, and other pathological mechanisms in CAD by acting on different cell types. Some lncRNAs are significantly upregulated in CAD patients; however, other lncRNAs are significantly downregulated. Differential expression of lncRNAs in CAD patients enables them to be exploited as potential biomarkers to evaluate disease progression and diagnosis/prognosis in CAD patients. In this study, we reviewed the role of lncRNAs in the development of different clinical subtypes of CAD.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Jingru Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Guihu Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Yunzhu Peng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Xiangfeng Bai
- Department of Cardiac Surgery, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Luqiao Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| |
Collapse
|
4
|
Zhou H, Song WH. LncRNA HCG11 Accelerates Atherosclerosis via Regulating the miR-224-3p/JAK1 Axis. Biochem Genet 2023; 61:372-389. [PMID: 35931919 DOI: 10.1007/s10528-022-10261-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/03/2022] [Indexed: 01/24/2023]
Abstract
Atherosclerosis (AS) is the typical cardiovascular disease, which is the main underlying inducement of cardiovascular diseases. Aberrant expression of long noncoding RNA HLA complex group 11 (HCG11) was engaged with atherosclerosis. The objective of the present research was to explore the role and the potential mechanism of HCG11 in AS. Human umbilical vein endothelial cells (HUVECs) were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce the AS model in vitro. The cell viability was detected by MTT assay. Flow cytometry was performed to determine cell pyroptosis. Gene and protein levels were detected by qPCR or Western blot assay. The interaction between HCG11, miR-224-3p, and Janus kinase 1 (JAK1) was validated by dual-luciferase reporter assays. Ox-LDL treatment aggravated cell pyroptosis and inflammation in HUVECs. And the levels of HCG11 and JAK1 was enhanced in ox-LDL-induced HUVECs, while miR-224-3p expression was reduced. Additionally, knockdown of HCG11 or miR-224-3p overexpression reversed the ox-LDL-induced cell viability decline and the increase of cell pyroptosis and inflammation-related proteins, including gasdermin D N-terminal (GSDMD-N), Caspase-1, NOD-like receptor family pyrin domain-containing 3 (NLRP3), interleukin 18 (IL-18), and interleukin 1beta (IL-1β). Moreover, HCG11 could modulate the JAK1 expression via targeting miR-224-3p. The inhibitory effect of HCG11 silencing on cell pyroptosis and inflammation was reversed by miR-224-3p knockdown. Furthermore, overexpression of miR-224-3p could repress the ox-LDL-induced cell pyroptosis and inflammation via regulating JAK1 expression. Knockdown of HCG11 alleviated cell pyroptosis and inflammation induced by ox-LDL via targeting the miR-224-3p/JAK1 axis, indicating that HCG11 could be the latent target of diagnosis or treatment for AS.
Collapse
Affiliation(s)
- Hua Zhou
- The Second Department of Endocrinology, Chenzhou No.1 People's Hospital, No.102 Luojiajing, Beihu District, Chenzhou, 423000, Hunan, China
| | - Wei-Hong Song
- The Second Department of Endocrinology, Chenzhou No.1 People's Hospital, No.102 Luojiajing, Beihu District, Chenzhou, 423000, Hunan, China.
| |
Collapse
|
5
|
Li J, Wu X, Ma H, Sun G, Ding P, Lu S, Zhang L, Yang P, Peng Y, Fu J, Wang L. New developments in non-exosomal and exosomal ncRNAs in coronary artery disease. Epigenomics 2022; 14:1355-1372. [PMID: 36514887 DOI: 10.2217/epi-2022-0201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim & methods: Non-exosomal and exosomal ncRNAs have been reported to be involved in the regulation of coronary artery disease (CAD). Therefore, to explore the biological effects of non-exosomal/exosomal ncRNAs in CAD, the authors searched for studies published in the last 3 years on these ncRNAs in CAD and summarized their functions and mechanisms. Results: The authors summarized 120 non-exosomal ncRNAs capable of regulating CAD progression. In clinical studies, 47 non-exosomal and nine exosomal ncRNAs were able to serve as biomarkers for the diagnosis of CAD. Conclusion: Non-exosomal/exosomal ncRNAs are not only able to serve as biomarkers for CAD diagnosis but can also regulate CAD progression through ceRNA mechanisms and are a potential target for early clinical intervention in CAD.
Collapse
Affiliation(s)
- Jingru Li
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Xinyu Wu
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Haocheng Ma
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Guihu Sun
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Peng Ding
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Si Lu
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Lijiao Zhang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Ping Yang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Yunzhu Peng
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jingyun Fu
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Luqiao Wang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| |
Collapse
|
6
|
Xiong T, Xiao B, Wu Y, Liu Y, Li Q. Upregulation of the Long Non-coding RNA LINC01480 Is Associated With Immune Infiltration in Coronary Artery Disease Based on an Immune-Related lncRNA-mRNA Co-expression Network. Front Cardiovasc Med 2022; 9:724262. [PMID: 35557532 PMCID: PMC9086407 DOI: 10.3389/fcvm.2022.724262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 03/18/2022] [Indexed: 12/03/2022] Open
Abstract
Coronary artery disease (CAD) is considered one of the leading causes of death worldwide. Although dysregulation of long non-coding RNAs (lncRNAs) has been reported to be associated with the initiation and progression of CAD, the knowledge regarding their specific functions as well their physiological/pathological significance in CAD is very limited. In this study, we aimed to systematically analyze immune-related lncRNAs in CAD and explore the relationship between key immune-related lncRNAs and the immune cell infiltration process. Based on differential expression analysis of mRNAs and lncRNAs, an immune-related lncRNA-mRNA weighted gene co-expression network containing 377 lncRNAs and 119 mRNAs was constructed. LINC01480 and AL359237.1 were identified as the hub immune-related lncRNAs in CAD using the random forest-recursive feature elimination and least absolute shrinkage and selection operator logistic regression. Furthermore, 93 CAD samples were divided into two subgroups according to the expression values of LINC01480 and AL359237.1 by consensus clustering analysis. By performing gene set enrichment analysis, we found that cluster 2 enriched more cardiovascular risk pathways than cluster 1. The immune cell infiltration analysis of ischemic cardiomyopathy (ICM; an advanced stage of CAD) samples revealed that the proportion of macrophage M2 was upregulated in the LINC01480 highly expressed samples, thus suggesting that LINC01480 plays a protective role in the progression of ICM. Based on the findings of this study, lncRNA LINC01480 may be used as a novel biomarker and therapeutic target for CAD.
Collapse
Affiliation(s)
- Ting Xiong
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Botao Xiao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Yueheng Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangzhou, China
| | - Yunfeng Liu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Quhuan Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
- *Correspondence: Quhuan Li,
| |
Collapse
|
7
|
Yao H, Xu H, Qiu S, Chen J, Lin Z, Zhu J, Sun X, Gao Q, Chen X, Xi C, Huang D, Zhang F, Gao S, Wang Z, Zhang J, Liu X, Ren G, Tao X, Li M, Chen W. Choline deficiency-related multi-omics characteristics are susceptible factors for chemotherapy-induced thrombocytopenia. Pharmacol Res 2022; 178:106155. [DOI: 10.1016/j.phrs.2022.106155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023]
|