1
|
Gao XF, Chen AQ, Tang HY, Kong XQ, Zhang H, Wang ZM, Lu W, Wang LG, Wang F, Zhou WY, Gu Y, Zuo GF, Ge Z, Zhang JJ, Chen SL. m 6A Modification of Profilin-1 in Vascular Smooth Muscle Cells Drives Phenotype Switching and Neointimal Hyperplasia via Activation of the p-ANXA2/STAT3 Pathway. Arterioscler Thromb Vasc Biol 2024. [PMID: 39508106 DOI: 10.1161/atvbaha.124.321399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND In-stent restenosis is characterized by a significant reduction in lumen diameter within the stented segment, primarily attributed to excessive proliferation of vascular smooth muscle cells (VSMCs) and neointimal hyperplasia. PFN1 (profilin-1), an actin-sequestering protein extensively studied in amyotrophic lateral sclerosis, remains less explored in neointimal hyperplasia. METHODS Utilizing single-cell RNA sequencing alongside data from in-stent restenosis patients and various experimental in-stent restenosis models (swine, rats, and mice), we investigated the role of PFN1 in promoting VSMC phenotype switching and neointimal hyperplasia. RESULTS Single-cell RNA sequencing of stenotic rat carotid arteries revealed a critical role for PFN1 in neointimal hyperplasia, a finding corroborated in stented swine coronary arteries, in-stent restenosis patients, PFN1SMC-IKO (SMC-specific PFN1 knockout) mice, and PFN1 overexpressed mice. PFN1 deletion was shown to suppress VSMC phenotype switching and neointimal hyperplasia in PFN1SMC-IKO mice subjected to a wire-injured model. To elucidate the observed discordance in PFN1 mRNA and protein levels, we identified that METTL3 (N6-methyladenosine methyltransferase) and YTHDF3 (N6-methyladenosine-specific reader) enhance PFN1 translation efficiency in an N6-methyladenosine-dependent manner, confirmed through experiments involving METTL3 knockout and YTHDF3 knockout mice. Furthermore, PFN1 was mechanistically found to interact with the phosphorylation of ANXA2 (annexin A2) by recruiting Src, promoting the phosphorylation of STAT3, a typical transcription factor known to induce VSMC phenotype switching. CONCLUSIONS This study unveils the significance of PFN1 N6-methyladenosine modification in VSMCs, demonstrating its role in promoting phenotype switching and neointimal hyperplasia through the activation of the p-ANXA2 (phospho-ANXA2)/STAT3 pathway.
Collapse
Affiliation(s)
- Xiao-Fei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Ai-Qun Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Hao-Yue Tang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Xiang-Quan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Huan Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Zhi-Mei Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Wei Lu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Li-Guo Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Wen-Ying Zhou
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Guang-Feng Zuo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Zhen Ge
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Shao-Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| |
Collapse
|
2
|
Gou Y, Zhao A, Qin T, Yang B. Identification of the Neointimal Hyperplasia-Related LncRNA-mRNA-Immune Cell Regulatory Network in a Rat Carotid Artery Balloon Injury Model. Int Heart J 2024; 65:945-955. [PMID: 39261031 DOI: 10.1536/ihj.24-062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Excessive neointimal hyperplasia (NIH) of coronary vessels in patients is the main cause of restenosis (RS) after percutaneous coronary intervention (PCI). This study aimed to identify the regulatory genes related to NIH in a rat carotid artery balloon injury model.We established a rat model and performed RNA sequencing to identify differentially expressed long non-coding RNAs (DElncRNAs) and differentially expressed message RNAs (DEmRNAs). Immune cells were analyzed using a murine Microenvironment Cell Population counter. The Pearson correlation between DEmRNAs, DElncRNAs, and immune cells was analyzed, followed by function enrichment analysis. Core DEmRNA was identified using Cytoscape. Next, a core lncRNAs-mRNAs-immune cell regulatory network was constructed. NIH-related gene sets from the Gene Expression Omnibus and GeneCards databases were used for validation.A total of 2,165 DEmRNAs and 705 DElncRNAs were identified in rat carotid artery tissue. Four key immune cells were screened out, including mast cells, vessels, endothelial cells, and fibroblasts. Based on the Pearson correlation between DEmRNAs, DElncRNAs and 4 key immune cells, 246 DEmRNAs and 93 DElncRNAs were obtained. DEmRNAs that interact with lncRNAs were mainly involved in the cell cycle, MAPK signaling pathway, and PI3K-Akt signaling pathway. A core lncRNA-mRNA-immune cell regulatory network was constructed, including 9 mRNAs, 4 lncRNAs, and fibroblasts. External datasets validation confirmed the significant correlation of both these mRNAs and lncRNAs with NIH.In this study, an lncRNA-mRNA-immune cell regulatory network related to NIH was constructed, which provided clues for exploring the potential mechanism of RS in cardiovascular diseases.
Collapse
Affiliation(s)
- Yuan Gou
- Department of Vascular Surgery, Jining Medical University Affiliated Jining No. 1 People's Hospital
| | - Anli Zhao
- Department of Cardiovascular Medicine, Affiliated Hospital of Jining Medical University
| | - Tao Qin
- Department of Vascular Surgery, Jining Medical University Affiliated Jining No. 1 People's Hospital
| | - Bin Yang
- Department of Vascular Surgery, Jining No. 1 People's Hospital
| |
Collapse
|
3
|
Sun X, Wu J, Zhang X, Xie C, Wei H, Li P, Yang Y, Yuan H, Cai J, Xiao Q, Cheng J, Xu Q. Atlas of Cell Repertoire Within Neointimal Lesions Is Metabolically Altered in Hypertensive Rats. Hypertension 2024; 81:787-800. [PMID: 38240164 DOI: 10.1161/hypertensionaha.123.22057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND High blood pressure has been suggested to accelerate vascular injury-induced neointimal formation and progression. However, little is known about the intricate relationships between vascular injury and hypertension in the context of arterial remodeling. METHODS Single-cell RNA-sequencing analysis was used to depict the cell atlas of carotid arteries of Wistar Kyoto rats and spontaneously hypertensive rats with or without balloon injury. RESULTS We found that hypertension significantly aggravated balloon injury-induced arterial stenosis. A total of 36 202 cells from carotid arteries with or without balloon injury were included in single-cell RNA-sequencing analysis. Cell composition analysis showed that vascular injury and hypertension independently induced distinct aortic cell phenotypic alterations including immune cells, endothelial cells (ECs), and smooth muscle cells. Specifically, our data showed that injury and hypertension-induced specific EC phenotypic alterations, and revealed a transition from functional ECs to hypermetabolic, and eventually dysfunctional ECs in hypertensive rats upon balloon injury. Importantly, our data also showed that vascular injury and hypertension-induced different smooth muscle cell phenotypic alterations, characterized by deferential expression of synthetic signatures. Interestingly, pathway analysis showed that dysregulated metabolic pathways were a common feature in monocytes/macrophages, ECs, and smooth muscle cells in response to injury and hypertension. Functionally, we demonstrate that inhibition of mitochondrial respiration significantly ameliorated injury-induced neointimal formation in spontaneously hypertensive rats. CONCLUSIONS This study provides the cell landscape changes of the main aortic cell phenotypic alterations in response to injury and hypertension. Our findings suggest that targeting cellular mitochondrial respiration could be a novel therapeutic for patients with hypertension undergoing vascular angioplasty.
Collapse
Affiliation(s)
- Xiaolei Sun
- Department of General Surgery (Vascular Surgery), Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou, China (X.S., H.W.)
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Junru Wu
- Department of Cardiology and Center of Pharmacology, Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (J.W., H.Y., J. Cai)
| | - Xiaolin Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Cheng Xie
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Haijun Wei
- Department of General Surgery (Vascular Surgery), Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou, China (X.S., H.W.)
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Hong Yuan
- Department of Cardiology and Center of Pharmacology, Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (J.W., H.Y., J. Cai)
| | - Jingjing Cai
- Department of Cardiology and Center of Pharmacology, Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (J.W., H.Y., J. Cai)
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, United Kingdom (Q. Xiao, Q. Xu)
| | - Jun Cheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Qingbo Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, United Kingdom (Q. Xiao, Q. Xu)
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Q. Xu)
| |
Collapse
|
4
|
Cai C, Weng Y, Wang X, Wu Y, Li Y, Wang P, Zeng C, Yang Z, Jia B, Tang L, Chen L. Single-cell RNA landscape of cell heterogeneity and immune microenvironment in ligation-induced vascular remodeling in rat. Atherosclerosis 2023; 377:1-11. [PMID: 37343431 DOI: 10.1016/j.atherosclerosis.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND AND AIMS Vascular remodeling is a common pathological basis for cardiovascular diseases. Although both immune and non-immune cells have been suggested to contribute to this process, the complex cellular heterogeneity and intercellular interactions remain largely uncharacterized. METHODS AND RESULTS In this study, we simulated early and late vascular remodeling by ligating the rat carotid artery for 1 week and 4 weeks, respectively. Using single-cell RNA-sequencing, we characterized gene expression signatures and driver signals of major cell types involved in vascular remodeling. Focused analysis revealed a novel sub-population of Selenbp1hi smooth muscle cells (SMCs) associated with vascular remodeling. Results of intercellular communication analyses predicted several ligand-receptor pairs between immune cells with SMCs and endothelial cells (ECs), implicating SMCs apoptosis and repair, ECs aging and inflammatory responses. CONCLUSIONS We present a comprehensive single-cell atlas of vascular cells in early and late stages of ligated rat carotid artery, providing valuable insights into the understanding of the initiation and progression of vascular remodeling.
Collapse
Affiliation(s)
- Changhong Cai
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yingzheng Weng
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, China; Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310013, China
| | - Xihao Wang
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310013, China
| | - Yonghui Wu
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, 323000, China
| | - Ya Li
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, 323000, China
| | - Peipei Wang
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, 323000, China
| | - Chunlai Zeng
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, 323000, China
| | - Zhouxin Yang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, China
| | - Bingbing Jia
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, China.
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, China.
| | - Lianglong Chen
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
5
|
Tang HY, Chen AQ, Zhang H, Gao XF, Kong XQ, Zhang JJ. Vascular Smooth Muscle Cells Phenotypic Switching in Cardiovascular Diseases. Cells 2022; 11:cells11244060. [PMID: 36552822 PMCID: PMC9777337 DOI: 10.3390/cells11244060] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/16/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs), the major cell type in the arterial vessel wall, have a contractile phenotype that maintains the normal vessel structure and function under physiological conditions. In response to stress or vascular injury, contractile VSMCs can switch to a less differentiated state (synthetic phenotype) to acquire the proliferative, migratory, and synthetic capabilities for tissue reparation. Imbalances in VSMCs phenotypic switching can result in a variety of cardiovascular diseases, including atherosclerosis, in-stent restenosis, aortic aneurysms, and vascular calcification. It is very important to identify the molecular mechanisms regulating VSMCs phenotypic switching to prevent and treat cardiovascular diseases with high morbidity and mortality. However, the key molecular mechanisms and signaling pathways participating in VSMCs phenotypic switching have still not been fully elucidated despite long-term efforts by cardiovascular researchers. In this review, we provide an updated summary of the recent studies and systematic knowledge of VSMCs phenotypic switching in atherosclerosis, in-stent restenosis, aortic aneurysms, and vascular calcification, which may help guide future research and provide novel insights into the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Hao-Yue Tang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China
| | - Ai-Qun Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China
| | - Huan Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China
| | - Xiao-Fei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China
- Department of Cardiology, Nanjing Heart Centre, No. 68 Changle Road, Nanjing 210006, China
| | - Xiang-Quan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China
- Department of Cardiology, Nanjing Heart Centre, No. 68 Changle Road, Nanjing 210006, China
- Correspondence: or ; Tel./Fax: +86-25-52208048
| |
Collapse
|
6
|
Meneri M, Bonato S, Gagliardi D, Comi GP, Corti S. New Insights into Cerebral Vessel Disease Landscapes at Single-Cell Resolution: Pathogenetic and Therapeutic Perspectives. Biomedicines 2022; 10:1693. [PMID: 35884997 PMCID: PMC9313091 DOI: 10.3390/biomedicines10071693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022] Open
Abstract
Cerebrovascular diseases are a leading cause of death and disability globally. The development of new therapeutic targets for cerebrovascular diseases (e.g., ischemic, and hemorrhagic stroke, vascular dementia) is limited by a lack of knowledge of the cellular and molecular biology of health and disease conditions and the factors that cause injury to cerebrovascular structures. Here, we describe the role of advances in omics technology, particularly RNA sequencing, in studying high-dimensional, multifaceted profiles of thousands of individual blood and vessel cells at single-cell resolution. This analysis enables the dissection of the heterogeneity of diseased cerebral vessels and their atherosclerotic plaques, including the microenvironment, cell evolutionary trajectory, and immune response pathway. In animal models, RNA sequencing permits the tracking of individual cells (including immunological, endothelial, and vascular smooth muscle cells) that compose atherosclerotic plaques and their alteration under experimental settings such as phenotypic transition. We describe how single-cell RNA transcriptomics in humans allows mapping to the molecular and cellular levels of atherosclerotic plaques in cerebral arteries, tracking individual lymphocytes and macrophages, and how these data can aid in identifying novel immune mechanisms that could be exploited as therapeutic targets for cerebrovascular diseases. Single-cell multi-omics approaches will likely provide the unprecedented resolution and depth of data needed to generate clinically relevant cellular and molecular signatures for the precise treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Megi Meneri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (M.M.); (D.G.); (G.P.C.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Sara Bonato
- Stroke Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Delia Gagliardi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (M.M.); (D.G.); (G.P.C.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (M.M.); (D.G.); (G.P.C.)
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (M.M.); (D.G.); (G.P.C.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|