1
|
Guglielmo M, Fusini L, Baessato F, Baggiano A, Mushtaq S, Annoni A, Carerj ML, Cilia F, Fazzari F, Formenti A, Gripari P, Mancini ME, Marchetti F, Penso M, Volpe A, Tassetti L, Guaricci AI, Muscogiuri G, Costantini P, van der Bilt I, van der Harst P, Rabbat MG, Rossi A, Fontana M, Pontone G. PROGnostic RolE of strain measurements in stress cardiac MRI in predicting major adverse cardiac events. Int J Cardiol 2024; 412:132337. [PMID: 38964552 DOI: 10.1016/j.ijcard.2024.132337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVES We aimed to investigate the role of feature-tracking (FT) strain in long-term risk stratification of patients with known or suspected coronary artery disease (CAD) who underwent stress cardiac MRI with dipyridamole; to determine if contrast-free stress cardiac MRI with strain measurements could provide comparable prognostic value to myocardial perfusion. MATERIALS AND METHODS This retrospective study included consecutive patients with stable symptoms suggesting possible cardiac ischemia who underwent stress cardiac MRI with dipyridamole. The mean follow-up period was 5.8 years ±1.2 [SD]. FT cardiac MRI analysis was performed for each patient to obtain 2D global peak circumferential strain (GCS). The primary outcome measure was major adverse cardiac events (MACE), defined as nonfatal myocardial infarction and cardiac death. RESULTS A total of 729 patients (mean age, 63 years ±10 [SD]; 616 males) were included. MACE occurred in 70 (9.6%) patients. The presence of late gadolinium enhancement (LGE) ([HR] 2.74, [95% CI: 1.53, 4.88]; P < .001) and stress GCS (HR, 1.06 [95% CI: 1.01, 1.12]; P = .016) were independently associated with MACE. A model based on contrast-free assessment of LVEF and stress GCS showed similar performance for predicting MACE than LVEF and perfusion (P = .056). CONCLUSIONS In patients with known or suspected CAD undergoing stress cardiac MRI with dipyridamole, GCS and LGE presence were independent predictors of MACE. Contrast-free stress cardiac MRI with stress GCS measurement offered prognostic value akin to myocardial perfusion assessment. CLINICAL RELEVANCE STATEMENT Stress global circumferential strain represented an additional method to predict major adverse cardiac events in patients undergoing stress cardiac MRI, even without the use of contrast agents. This would be of particular significance in patients with severe renal impairment.
Collapse
Affiliation(s)
- Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, the Netherlands; Department of Cardiology, Haga Teaching Hospital, The Hague, Netherlands
| | - Laura Fusini
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Francesca Baessato
- Department of Cardiology, San Maurizio Regional Hospital, Bolzano, Italy
| | - Andrea Baggiano
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Cardiovascular Sciences and Community Health, University of Milan, Milan, Italy
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Andrea Annoni
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Maria Ludovica Carerj
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Section of Diagnostic and Interventional Radiology, Department of Biomedical Sciences and Morphological and Functional Imaging, "G. Martino" University Hospital Messina, Messina, Italy
| | - Francesco Cilia
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Fabio Fazzari
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Alberto Formenti
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Paola Gripari
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Maria Elisabetta Mancini
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Francesca Marchetti
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Marco Penso
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Alessandra Volpe
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luigi Tassetti
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Andrea Igoren Guaricci
- Cardiology University Unit, Department of Interdisciplinary Medicine, University Hospital Polyclinc of Bari, Bari, Italy
| | - Giuseppe Muscogiuri
- Department of Diagnostic and Interventional Radiology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Pietro Costantini
- Radiology Department, Ospedale Maggiore della Carita' University Hospital, Novara, Italy
| | - Ivo van der Bilt
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, the Netherlands; Department of Cardiology, Haga Teaching Hospital, The Hague, Netherlands
| | - Pim van der Harst
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Mark G Rabbat
- Loyola University of Chicago, Chicago, IL, USA; Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital, Zurich, Switzerland; Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Marianna Fontana
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, UK
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Werner O, Martins D, Bertini F, Bennati E, Collia D, Olivotto I, Spaziani G, Baruteau AE, Pedrizzetti G, Raimondi F. Comparative analysis of left ventricle function and deformation imaging in short and long axis plane in cardiac magnetic resonance imaging. Front Cardiovasc Med 2024; 11:1388171. [PMID: 38756751 PMCID: PMC11097778 DOI: 10.3389/fcvm.2024.1388171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Background Advancements in cardiac imaging have revolutionized our understanding of ventricular contraction. While ejection fraction (EF) is still the gold standard parameter to assess left ventricle (LV) function, strain imaging (SI) has provided valuable insights into ventricular mechanics. The lack of an integrative method including SI parameters in a single, validated formula may limit its use. Our aim was to compare different methods for evaluating global circumferential strain (GCS) and their relationship with global longitudinal strain (GLS) and EF in CMR and how the different evaluations fit in the theoretical relationship between EF and global strain. Methods Retrospective monocenter study. Inclusion of every patient who underwent a CMR during a 15 months period with various clinical indication (congenital heart defect, myocarditis, cardiomyopathy). A minimum of three LV long-axis planes and a stack of short-axis slices covering the LV using classical steady-state free precession cine sequences. A single assessment of GLS on long axis (LAX) slices and a double assessment of GCS and EF with both short axis (SAX) and LAX slices were made by a single experienced CMR investigator. Results GCS-SAX and GCS-LAX were correlated (r = 0.77, P < 0.001) without being interchangeable with a high reproducibility for GCS, GLS and EF. EF calculated from LAX images showed an overestimation compared to EF derived from SAX images of 7%. The correlation between calculated EF and theoretical EF derived from SI was high (r = 0.88 with EF-SAX, 0.95 with EF-LAX). Data conclusion This study highlights the need to integrate strain imaging techniques into clinical by incorporating strain parameters into EF calculations, because it gives a deeper understanding of cardiac mechanics.
Collapse
Affiliation(s)
- Oscar Werner
- Pediatric Cardiology Unit, University Hospital Meyer, Florence, Italy
- Department of Pediatric Cardiology and Pediatric Cardiac Surgery, FHU PRECICARE, Nantes Université, CHU Nantes, Nantes, France
| | - Duarte Martins
- Pediatric and Adult Congenital Cardiology Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Federico Bertini
- Pediatric Radiology Department, University Hospital Meyer, Florence, Italy
| | - Elena Bennati
- Pediatric Cardiology Unit, University Hospital Meyer, Florence, Italy
| | - Dario Collia
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Iacopo Olivotto
- Pediatric Cardiology Unit, University Hospital Meyer, Florence, Italy
| | - Gaia Spaziani
- Pediatric Cardiology Unit, University Hospital Meyer, Florence, Italy
| | - Alban-Elouen Baruteau
- Department of Pediatric Cardiology and Pediatric Cardiac Surgery, FHU PRECICARE, Nantes Université, CHU Nantes, Nantes, France
| | - Gianni Pedrizzetti
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Francesca Raimondi
- Pediatric Cardiology Unit, University Hospital Meyer, Florence, Italy
- Pediatric and Adult Congenital Cardiology Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
3
|
Yarahmadi P, Forouzannia SM, Forouzannia SA, Malik SB, Yousefifard M, Nguyen PK. Prognostic Value of Qualitative and Quantitative Stress CMR in Patients With Known or Suspected CAD. JACC Cardiovasc Imaging 2024; 17:248-265. [PMID: 37632499 DOI: 10.1016/j.jcmg.2023.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Recent studies suggest that quantitative cardiac magnetic resonance (CMR) may have more accuracy than qualitative CMR in coronary artery disease (CAD) diagnosis. However, the prognostic value of quantitative and qualitative CMR has not been compared systematically. OBJECTIVES The objective was to conduct a systematic review and meta-analysis assessing the utility of qualitative and quantitative stress CMR in the prognosis of patients with known or suspected CAD. METHODS A comprehensive search was performed through Embase, Scopus, Web of Science, and Medline. Studies that used qualitative vasodilator CMR or quantitative CMR assessments to compare the prognosis of patients with positive and negative CMR results were extracted. A meta-analysis was then performed to assess: 1) major adverse cardiovascular events (MACE) including cardiac death, nonfatal myocardial infarction (MI), unstable angina, and coronary revascularization; and 2) cardiac hard events defined as the composite of cardiac death and nonfatal MI. RESULTS Forty-one studies with 38,030 patients were included in this systematic review. MACE occurred significantly more in patients with positive qualitative (HR: 3.86; 95% CI: 3.28-4.54) and quantitative (HR: 4.60; 95% CI: 1.60-13.21) CMR assessments. There was no significant difference between qualitative and quantitative CMR assessments in predicting MACE (P = 0.75). In studies with qualitative CMR assessment, cardiac hard events (OR: 7.21; 95% CI: 4.99-10.41), cardiac death (OR: 5.63; 95% CI: 2.46-12.92), nonfatal MI (OR: 7.46; 95% CI: 3.49-15.96), coronary revascularization (OR: 6.34; 95% CI: 3.42-1.75), and all-cause mortality (HR: 1.66; 95% CI: 1.12-2.47) were higher in patients with positive CMR. CONCLUSIONS The presence of myocardial ischemia on CMR is associated with worse clinical outcomes in patients with known or suspected CAD. Both qualitative and quantitative stress CMR assessments are helpful tools for predicting clinical outcomes.
Collapse
Affiliation(s)
- Pourya Yarahmadi
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA; Stanford Cardiovascular Institute, Stanford, California, USA
| | | | - Seyed Ali Forouzannia
- Department of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sachin B Malik
- Department of Radiology, Division of Cardiovascular Imaging, Stanford University, Stanford, California, USA
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Patricia K Nguyen
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA; Stanford Cardiovascular Institute, Stanford, California, USA.
| |
Collapse
|
4
|
Korosoglou G, Sagris M, André F, Steen H, Montenbruck M, Frey N, Kelle S. Systematic review and meta-analysis for the value of cardiac magnetic resonance strain to predict cardiac outcomes. Sci Rep 2024; 14:1094. [PMID: 38212323 PMCID: PMC10784294 DOI: 10.1038/s41598-023-50835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
Cardiac magnetic resonance (CMR) is the gold standard for the diagnostic classification and risk stratification in most patients with cardiac disorders. The aim of the present study was to investigate the ability of Strain-encoded MR (SENC) for the prediction of major adverse cardiovascular events (MACE). A systematic review and meta-analysis was performed according to the PRISMA Guidelines, including patients with or without cardiovascular disease and asymptomatic individuals. Myocardial strain by HARP were used as pulse sequences in 1.5 T scanners. Published literature in MEDLINE (PubMed) and Cochrane's databases were explored before February 2023 for studies assessing the clinical utility of myocardial strain by Harmonic Phase Magnetic Resonance Imaging (HARP), Strain-encoded MR (SENC) or fast-SENC. In total, 8 clinical trials (4 studies conducted in asymptomatic individuals and 4 in patients with suspected or known cardiac disease) were included in this systematic review, while 3 studies were used for our meta-analysis, based on individual patient level data. Kaplan-Meier analysis and Cox proportional hazard models were used, testing the ability of myocardial strain by HARP and SENC/fast-SENC for the prediction of MACE. Strain enabled risk stratification in asymptomatic individuals, predicting MACE and the development of incident heart failure. Of 1332 patients who underwent clinically indicated CMR, including SENC or fast-SENC acquisitions, 19 patients died, 28 experienced non-fatal infarctions, 52 underwent coronary revascularization and 86 were hospitalized due to heart failure during median 22.4 (17.2-28.5) months of follow-up. SENC/fast-SENC, predicted both all-cause mortality and MACE with high accuracy (HR = 3.0, 95% CI = 1.2-7.6, p = 0.02 and HR = 4.1, 95% CI = 3.0-5.5, respectively, p < 0.001). Using hierarchical Cox-proportional hazard regression models, SENC/fast-SENC exhibited incremental value to clinical data and conventional CMR parameters. Reduced myocardial strain predicts of all-cause mortality and cardiac outcomes in symptomatic patients with a wide range of ischemic or non-ischemic cardiac diseases, whereas in asymptomatic individuals, reduced strain was a precursor of incident heart failure.
Collapse
Affiliation(s)
- Grigorios Korosoglou
- Departments of Cardiology, Vascular Medicine and Pneumology, GRN Academic Teaching Hospital Weinheim, Roentgenstrasse 1, 69469, Weinheim, Germany.
- Cardiac Imaging Center Weinheim, Hector Foundations, Weinheim, Germany.
| | - Marios Sagris
- Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Florian André
- Departments of Cardiology, Angiology and Pneumology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Henning Steen
- Departments of Cardiology, Angiology and Pneumology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | | | - Norbert Frey
- Departments of Cardiology, Angiology and Pneumology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Sebastian Kelle
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
5
|
Pezel T, Garot P, Toupin S, Hovasse T, Sanguineti F, Champagne S, Morisset S, Chitiboi T, Jacob AJ, Sharma P, Unterseeh T, Garot J. Prognostic impact of artificial intelligence-based fully automated global circumferential strain in patients undergoing stress CMR. Eur Heart J Cardiovasc Imaging 2023; 24:1269-1279. [PMID: 37159403 DOI: 10.1093/ehjci/jead100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/11/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023] Open
Abstract
AIMS To determine whether fully automated artificial intelligence-based global circumferential strain (GCS) assessed during vasodilator stress cardiovascular (CV) magnetic resonance (CMR) can provide incremental prognostic value. METHODS AND RESULTS Between 2016 and 2018, a longitudinal study included all consecutive patients with abnormal stress CMR defined by the presence of inducible ischaemia and/or late gadolinium enhancement. Control subjects with normal stress CMR were selected using a propensity score-matching. Stress-GCS was assessed using a fully automatic machine-learning algorithm based on featured-tracking imaging from short-axis cine images. The primary outcome was the occurrence of major adverse clinical events (MACE) defined as CV mortality or nonfatal myocardial infarction. Cox regressions evaluated the association between stress-GCS and the primary outcome after adjustment for traditional prognosticators. In 2152 patients [66 ± 12 years, 77% men, 1:1 matched patients (1076 with normal and 1076 with abnormal CMR)], stress-GCS was associated with MACE [median follow-up 5.2 (4.8-5.5) years] after adjustment for risk factors in the propensity-matched population [adjusted hazard ratio (HR), 1.12 (95% CI, 1.06-1.18)], and patients with normal CMR [adjusted HR, 1.35 (95% CI, 1.19-1.53), both P < 0.001], but not in patients with abnormal CMR (P = 0.058). In patients with normal CMR, an increased stress-GCS showed the best improvement in model discrimination and reclassification above traditional and stress CMR findings (C-statistic improvement: 0.14; NRI = 0.430; IDI = 0.089, all P < 0.001; LR-test P < 0.001). CONCLUSION Stress-GCS is not a predictor of MACE in patients with ischaemia, but has an incremental prognostic value in those with a normal CMR although the absolute event rate remains low.
Collapse
Affiliation(s)
- Théo Pezel
- Institut Cardiovasculaire Paris Sud (ICPS), Cardiovascular Magnetic Resonance Laboratory, Hôpital Privé Jacques CARTIER, Ramsay Santé, 6 Avenue du Noyer Lambert, 91300, Massy, France
- Université de Paris Cité, Department of Cardiology, Hôpital Lariboisière-APHP, Inserm UMRS 942, France
| | - Philippe Garot
- Institut Cardiovasculaire Paris Sud (ICPS), Cardiovascular Magnetic Resonance Laboratory, Hôpital Privé Jacques CARTIER, Ramsay Santé, 6 Avenue du Noyer Lambert, 91300, Massy, France
| | - Solenn Toupin
- Siemens Healthcare France, Scientific partnerships, 93200 Saint-Denis, France
| | - Thomas Hovasse
- Institut Cardiovasculaire Paris Sud (ICPS), Cardiovascular Magnetic Resonance Laboratory, Hôpital Privé Jacques CARTIER, Ramsay Santé, 6 Avenue du Noyer Lambert, 91300, Massy, France
| | - Francesca Sanguineti
- Institut Cardiovasculaire Paris Sud (ICPS), Cardiovascular Magnetic Resonance Laboratory, Hôpital Privé Jacques CARTIER, Ramsay Santé, 6 Avenue du Noyer Lambert, 91300, Massy, France
| | - Stéphane Champagne
- Institut Cardiovasculaire Paris Sud (ICPS), Cardiovascular Magnetic Resonance Laboratory, Hôpital Privé Jacques CARTIER, Ramsay Santé, 6 Avenue du Noyer Lambert, 91300, Massy, France
| | - Stéphane Morisset
- Independent Biostatistician, Université de Paris Cité, Pérouges, France
| | - Teodora Chitiboi
- Siemens Healthineers, Biomedical Engineering, Lindenplatz 2, Germany
| | - Athira J Jacob
- Siemens Healthineers, Digital Technologies and Innovation, 755 College Road East, Princeton NJ 08540, USA
| | - Puneet Sharma
- Siemens Healthineers, Digital Technologies and Innovation, 755 College Road East, Princeton NJ 08540, USA
| | - Thierry Unterseeh
- Institut Cardiovasculaire Paris Sud (ICPS), Cardiovascular Magnetic Resonance Laboratory, Hôpital Privé Jacques CARTIER, Ramsay Santé, 6 Avenue du Noyer Lambert, 91300, Massy, France
| | - Jérôme Garot
- Institut Cardiovasculaire Paris Sud (ICPS), Cardiovascular Magnetic Resonance Laboratory, Hôpital Privé Jacques CARTIER, Ramsay Santé, 6 Avenue du Noyer Lambert, 91300, Massy, France
| |
Collapse
|
6
|
Ricci F, Khanji MY, Bisaccia G, Cipriani A, Di Cesare A, Ceriello L, Mantini C, Zimarino M, Fedorowski A, Gallina S, Petersen SE, Bucciarelli-Ducci C. Diagnostic and Prognostic Value of Stress Cardiovascular Magnetic Resonance Imaging in Patients With Known or Suspected Coronary Artery Disease: A Systematic Review and Meta-analysis. JAMA Cardiol 2023; 8:662-673. [PMID: 37285143 PMCID: PMC10248816 DOI: 10.1001/jamacardio.2023.1290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/12/2023] [Indexed: 06/08/2023]
Abstract
Importance The clinical utility of stress cardiovascular magnetic resonance imaging (CMR) in stable chest pain is still debated, and the low-risk period for adverse cardiovascular (CV) events after a negative test result is unknown. Objective To provide contemporary quantitative data synthesis of the diagnostic accuracy and prognostic value of stress CMR in stable chest pain. Data Sources PubMed and Embase databases, the Cochrane Database of Systematic Reviews, PROSPERO, and the ClinicalTrials.gov registry were searched for potentially relevant articles from January 1, 2000, through December 31, 2021. Study Selection Selected studies evaluated CMR and reported estimates of diagnostic accuracy and/or raw data of adverse CV events for participants with either positive or negative stress CMR results. Prespecified combinations of keywords related to the diagnostic accuracy and prognostic value of stress CMR were used. A total of 3144 records were evaluated for title and abstract; of those, 235 articles were included in the full-text assessment of eligibility. After exclusions, 64 studies (74 470 total patients) published from October 29, 2002, through October 19, 2021, were included. Data Extraction and Synthesis This systematic review and meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Main Outcomes and Measures Diagnostic odds ratios (DORs), sensitivity, specificity, area under the receiver operating characteristic curve (AUROC), odds ratio (OR), and annualized event rate (AER) for all-cause death, CV death, and major adverse cardiovascular events (MACEs) defined as the composite of myocardial infarction and CV death. Results A total of 33 diagnostic studies pooling 7814 individuals and 31 prognostic studies pooling 67 080 individuals (mean [SD] follow-up, 3.5 [2.1] years; range, 0.9-8.8 years; 381 357 person-years) were identified. Stress CMR yielded a DOR of 26.4 (95% CI, 10.6-65.9), a sensitivity of 81% (95% CI, 68%-89%), a specificity of 86% (95% CI, 75%-93%), and an AUROC of 0.84 (95% CI, 0.77-0.89) for the detection of functionally obstructive coronary artery disease. In the subgroup analysis, stress CMR yielded higher diagnostic accuracy in the setting of suspected coronary artery disease (DOR, 53.4; 95% CI, 27.7-103.0) or when using 3-T imaging (DOR, 33.2; 95% CI, 19.9-55.4). The presence of stress-inducible ischemia was associated with higher all-cause mortality (OR, 1.97; 95% CI, 1.69-2.31), CV mortality (OR, 6.40; 95% CI, 4.48-9.14), and MACEs (OR, 5.33; 95% CI, 4.04-7.04). The presence of late gadolinium enhancement (LGE) was associated with higher all-cause mortality (OR, 2.22; 95% CI, 1.99-2.47), CV mortality (OR, 6.03; 95% CI, 2.76-13.13), and increased risk of MACEs (OR, 5.42; 95% CI, 3.42-8.60). After a negative test result, pooled AERs for CV death were less than 1.0%. Conclusion and Relevance In this study, stress CMR yielded high diagnostic accuracy and delivered robust prognostication, particularly when 3-T scanners were used. While inducible myocardial ischemia and LGE were associated with higher mortality and risk of MACEs, normal stress CMR results were associated with a lower risk of MACEs for at least 3.5 years.
Collapse
Affiliation(s)
- Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- William Harvey Research Institute, Barts Biomedical Research Centre, National Institute for Health and Care Research, Queen Mary University London, Charterhouse Square, London, United Kingdom
| | - Mohammed Y. Khanji
- William Harvey Research Institute, Barts Biomedical Research Centre, National Institute for Health and Care Research, Queen Mary University London, Charterhouse Square, London, United Kingdom
- Newham University Hospital, Barts Health NHS Trust, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London, United Kingdom
| | - Giandomenico Bisaccia
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alberto Cipriani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Annamaria Di Cesare
- Cardiology Unit, Rimini Hospital, Local Health Authority of Romagna, Rimini, Italy
| | - Laura Ceriello
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Cesare Mantini
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Marco Zimarino
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Artur Fedorowski
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Sabina Gallina
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Steffen E. Petersen
- Newham University Hospital, Barts Health NHS Trust, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London, United Kingdom
- The Alan Turing Institute, London, United Kingdom
- Health Data Research UK, London, United Kingdom
| | - Chiara Bucciarelli-Ducci
- Royal Brompton and Harefield Hospitals, Guys and St Thomas NHS Trust London, London, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, Kings College London, London, United Kingdom
| |
Collapse
|
7
|
Kelle S, Bourantas CV, Korosoglou G. Editorial: Insights in cardiovascular imaging: 2022. Front Cardiovasc Med 2023; 10:1231842. [PMID: 37435052 PMCID: PMC10332142 DOI: 10.3389/fcvm.2023.1231842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Affiliation(s)
- Sebastian Kelle
- Department of Cardiology, Angiologyand Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Side, Berlin, Germany
| | - Christos V. Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University, London, United Kingdom
| | - Grigorios Korosoglou
- Department of Cardiology, Vascular Medicine and Pneumology, GRN Hospital Weinheim, Weinheim, Germany
- Weinheim Cardiovascular Imaging Center, Hector Foundation, Weinheim, Germany
| |
Collapse
|
8
|
Counseller Q, Aboelkassem Y. Recent technologies in cardiac imaging. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 4:984492. [PMID: 36704232 PMCID: PMC9872125 DOI: 10.3389/fmedt.2022.984492] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023] Open
Abstract
Cardiac imaging allows physicians to view the structure and function of the heart to detect various heart abnormalities, ranging from inefficiencies in contraction, regulation of volumetric input and output of blood, deficits in valve function and structure, accumulation of plaque in arteries, and more. Commonly used cardiovascular imaging techniques include x-ray, computed tomography (CT), magnetic resonance imaging (MRI), echocardiogram, and positron emission tomography (PET)/single-photon emission computed tomography (SPECT). More recently, even more tools are at our disposal for investigating the heart's physiology, performance, structure, and function due to technological advancements. This review study summarizes cardiac imaging techniques with a particular interest in MRI and CT, noting each tool's origin, benefits, downfalls, clinical application, and advancement of cardiac imaging in the near future.
Collapse
Affiliation(s)
- Quinn Counseller
- College of Health Sciences, University of Michigan, Flint, MI, United States
| | - Yasser Aboelkassem
- College of Innovation and Technology, University of Michigan, Flint, MI, United States
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Pezel T, Bonnet G, Kinnel M, Asselin A, Hovasse T, Unterseeh T, Champagne S, Sanguineti F, Toupin S, Garot P, Garot J. Clustering of patients with inconclusive non-invasive stress testing referred for vasodilator stress cardiovascular magnetic resonance. Arch Cardiovasc Dis 2022; 115:627-636. [PMID: 36376207 DOI: 10.1016/j.acvd.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Inconclusive non-invasive stress testing is associated with impaired outcome. This population is very heterogeneous, and its characteristics are not well depicted by conventional methods. AIMS To identify patient subgroups by phenotypic unsupervised clustering, integrating clinical and cardiovascular magnetic resonance data to unveil pathophysiological differences between subgroups of patients with inconclusive stress tests. METHODS Between 2008 and 2020, consecutive patients with a first inconclusive non-invasive stress test referred for stress cardiovascular magnetic resonance were followed for the occurrence of major adverse cardiovascular events (defined as cardiovascular death or myocardial infarction). A cluster analysis was performed on clinical and cardiovascular magnetic resonance variables. RESULTS Of 1402 patients (67% male; mean age 70±11years) who completed the follow-up (median 6.5years, interquartile range 5.6-7.5years), 197 experienced major adverse cardiovascular events (14.1%). Three distinct phenogroups were identified based upon unsupervised hierarchical clustering of principal components: phenogroup 1=history of percutaneous coronary intervention with viable myocardial infarction and preserved left ventricular ejection fraction; phenogroup 2=atrial fibrillation with preserved left ventricular ejection fraction; and phenogroup 3=coronary artery bypass graft with non-viable myocardial scar and reduced left ventricular ejection fraction. Using survival analysis, the occurrence of major adverse cardiovascular events (P=0.007), cardiovascular mortality (P=0.002) and all-cause mortality (P<0.001) differed among the three phenogroups. Phenogroup 3 presented the worse prognosis. In each phenogroup, ischaemia was associated with major adverse cardiovascular events (phenogroup 1: hazard ratio 2.79, 95% confidence interval 1.61-4.84; phenogroup 2: hazard ratio 2.59, 95% confidence interval 1.69-3.97; phenogroup 3: hazard ratio 3.16, 95% confidence interval 1.82-5.49; all P<0.001). CONCLUSIONS Cluster analysis of clinical and cardiovascular magnetic resonance variables identified three phenogroups of patients with inconclusive stress testing, with distinct prognostic profiles.
Collapse
Affiliation(s)
- Théo Pezel
- Institut Cardiovasculaire Paris Sud, Cardiovascular Magnetic Resonance Laboratory, Hôpital Privé Jacques Cartier, Ramsay Santé, 91300 Massy, France; Department of Cardiology, Lariboisière Hospital, AP-HP, Inserm UMRS 942, University of Paris, 75010 Paris, France
| | - Guillaume Bonnet
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux, 33600 Pessac, France
| | - Marine Kinnel
- Institut Cardiovasculaire Paris Sud, Cardiovascular Magnetic Resonance Laboratory, Hôpital Privé Jacques Cartier, Ramsay Santé, 91300 Massy, France
| | | | - Thomas Hovasse
- Institut Cardiovasculaire Paris Sud, Cardiovascular Magnetic Resonance Laboratory, Hôpital Privé Jacques Cartier, Ramsay Santé, 91300 Massy, France
| | - Thierry Unterseeh
- Institut Cardiovasculaire Paris Sud, Cardiovascular Magnetic Resonance Laboratory, Hôpital Privé Jacques Cartier, Ramsay Santé, 91300 Massy, France
| | - Stéphane Champagne
- Institut Cardiovasculaire Paris Sud, Cardiovascular Magnetic Resonance Laboratory, Hôpital Privé Jacques Cartier, Ramsay Santé, 91300 Massy, France
| | - Francesca Sanguineti
- Institut Cardiovasculaire Paris Sud, Cardiovascular Magnetic Resonance Laboratory, Hôpital Privé Jacques Cartier, Ramsay Santé, 91300 Massy, France
| | - Solenn Toupin
- Scientific Partnerships Division, Siemens Healthcare France, 93200 Saint-Denis, France
| | - Philippe Garot
- Institut Cardiovasculaire Paris Sud, Cardiovascular Magnetic Resonance Laboratory, Hôpital Privé Jacques Cartier, Ramsay Santé, 91300 Massy, France
| | - Jérôme Garot
- Institut Cardiovasculaire Paris Sud, Cardiovascular Magnetic Resonance Laboratory, Hôpital Privé Jacques Cartier, Ramsay Santé, 91300 Massy, France.
| |
Collapse
|
10
|
Gräni C, Stark AW, Fischer K, Fürholz M, Wahl A, Erne SA, Huber AT, Guensch DP, Vollenbroich R, Ruberti A, Dobner S, Heg D, Windecker S, Lanz J, Pilgrim T. Diagnostic performance of cardiac magnetic resonance segmental myocardial strain for detecting microvascular obstruction and late gadolinium enhancement in patients presenting after a ST-elevation myocardial infarction. Front Cardiovasc Med 2022; 9:909204. [PMID: 35911559 PMCID: PMC9329615 DOI: 10.3389/fcvm.2022.909204] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMicrovascular obstruction (MVO) and Late Gadolinium Enhancement (LGE) assessed in cardiac magnetic resonance (CMR) are associated with adverse outcome in patients with ST-elevation myocardial infarction (STEMI). Our aim was to analyze the diagnostic performance of segmental strain for the detection of MVO and LGE.MethodsPatients with anterior STEMI, who underwent additional CMR were enrolled in this sub-study of the CARE-AMI trial. Using CMR feature tracking (FT) segmental circumferential peak strain (SCS) was measured and the diagnostic performance of SCS to discriminate MVO and LGE was assessed in a derivation and validation cohort.ResultsForty-eight STEMI patients (62 ± 12 years old), 39 (81%) males, who underwent CMR (i.e., mean 3.0 ± 1.5 days) after primary percutaneous coronary intervention (PCI) were included. All patients presented with LGE and in 40 (83%) patients, MVO was additionally present. Segments in all patients were visually classified and 146 (19%) segments showed MVO (i.e., LGE+/MVO+), 308 (40%) segments showed LGE and no MVO (i.e., LGE+/MVO–), and 314 (41%) segments showed no LGE (i.e., LGE–). Diagnostic performance of SCS for detecting MVO segments (i.e., LGE+/MVO+ vs. LGE+/MVO–, and LGE–) showed an AUC = 0.764 and SCS cut-off value was –11.2%, resulting in a sensitivity of 78% and a specificity of 67% with a positive predictive value (PPV) of 30% and a negative predictive value (NPV) of 94% when tested in the validation group. For LGE segments (i.e., LGE+/MVO+ and LGE+/MVO– vs. LGE–) AUC = 0.848 and SCS with a cut-off value of –13.8% yielded to a sensitivity of 76%, specificity of 74%, PPV of 81%, and NPV of 70%.ConclusionSegmental strain in STEMI patients was associated with good diagnostic performance for detection of MVO+ segments and very good diagnostic performance of LGE+ segments. Segmental strain may be useful as a potential contrast-free surrogate marker to improve early risk stratification in patients after primary PCI.
Collapse
Affiliation(s)
- Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- *Correspondence: Christoph Gräni,
| | - Anselm W. Stark
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kady Fischer
- Department of Anesthesiology and Pain Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Monika Fürholz
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Wahl
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie A. Erne
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian T. Huber
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominik P. Guensch
- Department of Anesthesiology and Pain Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - René Vollenbroich
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrea Ruberti
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan Dobner
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dik Heg
- Clinical Trials Unit, University of Bern, Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jonas Lanz
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pilgrim
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|