1
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R, Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:12. [PMID: 38185705 PMCID: PMC10772178 DOI: 10.1038/s41392-023-01688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-β, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-β, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.
Collapse
Affiliation(s)
- Meng Zhang
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
| | - Qian Liu
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hui Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hongxia Duan
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Xin Liu
- Second Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
2
|
Wang X, Yu Q, Liao X, Fan M, Liu X, Liu Q, Wang M, Wu X, Huang CK, Tan R, Yuan J. Mitochondrial Dysfunction in Arrhythmia and Cardiac Hypertrophy. Rev Cardiovasc Med 2023; 24:364. [PMID: 39077079 PMCID: PMC11272842 DOI: 10.31083/j.rcm2412364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 07/31/2024] Open
Abstract
Arrhythmia and cardiac hypertrophy are two very common cardiovascular diseases that can lead to heart failure and even sudden death, thus presenting a serious threat to human life and health. According to global statistics, nearly one million people per year die from arrhythmia, cardiac hypertrophy and other associated cardiovascular diseases. Hence, there is an urgent need to find new treatment targets and to develop new intervention measures. Recently, mitochondrial dysfunction has been examined in relation to heart disease with a view to lowering the incidence of arrhythmia and cardiac hypertrophy. The heart is the body's largest energy consuming organ, turning over about 20 kg of adenosine triphosphate (ATP) per day in the mitochondria. Mitochondrial oxidative phosphorylation (OXPHOS) produces up to 90% of the ATP needed by cardiac muscle cells for contraction and relaxation. Dysfunction of heart mitochondria can therefore induce arrhythmia, cardiac hypertrophy and other cardiovascular diseases. Mitochondrial DNA (mtDNA) mutations cause disorders in OXPHOS and defects in the synthesis of muscle contraction proteins. These lead to insufficient production of secondary ATP, increased metabolic requirements for ATP by the myocardium, and the accumulation of reactive oxygen species (ROS). The resulting damage to myocardial cells eventually induces arrhythmia and cardiac hypertrophy. Mitochondrial damage decreases the efficiency of energy production, which further increases the production of ROS. The accumulation of ROS causes mitochondrial damage and eventually leads to a vicious cycle of mitochondrial damage and low efficiency of mitochondrial energy production. In this review, the mechanism underlying the development of arrhythmia and cardiac hypertrophy is described in relation to mitochondrial energy supply, oxidative stress, mtDNA mutation and Mitochondrial dynamics. Targeted therapy for arrhythmia and cardiac hypertrophy induced by mitochondrial dysfunction is also discussed in terms of its potential clinical value. These strategies should improve our understanding of mitochondrial biology and the pathogenesis of arrhythmia and cardiac hypertrophy. They may also identify novel strategies for targeting mitochondria in the treatment of these diseases.
Collapse
Affiliation(s)
- Xiaomei Wang
- College of Basic Medical, Jining Medical University, 272067 Jining,
Shandong, China
| | - Qianxue Yu
- College of Basic Medical, Jining Medical University, 272067 Jining,
Shandong, China
- Collaborative Innovation Center for Birth Defect Research and
Transformation of Shandong Province, Jining Medical University, 272067 Jining,
Shandong, China
| | - Xuemei Liao
- Collaborative Innovation Center for Birth Defect Research and
Transformation of Shandong Province, Jining Medical University, 272067 Jining,
Shandong, China
- College of Second Clinical Medicine, Jining Medical University, 272067
Jining, Shandong, China
| | - Mengying Fan
- Collaborative Innovation Center for Birth Defect Research and
Transformation of Shandong Province, Jining Medical University, 272067 Jining,
Shandong, China
- College of Second Clinical Medicine, Jining Medical University, 272067
Jining, Shandong, China
| | - Xibin Liu
- College of Basic Medical, Jining Medical University, 272067 Jining,
Shandong, China
- Collaborative Innovation Center for Birth Defect Research and
Transformation of Shandong Province, Jining Medical University, 272067 Jining,
Shandong, China
| | - Qian Liu
- College of Basic Medical, Jining Medical University, 272067 Jining,
Shandong, China
- Collaborative Innovation Center for Birth Defect Research and
Transformation of Shandong Province, Jining Medical University, 272067 Jining,
Shandong, China
| | - Manru Wang
- Collaborative Innovation Center for Birth Defect Research and
Transformation of Shandong Province, Jining Medical University, 272067 Jining,
Shandong, China
- College of Second Clinical Medicine, Jining Medical University, 272067
Jining, Shandong, China
| | - Xinyu Wu
- Collaborative Innovation Center for Birth Defect Research and
Transformation of Shandong Province, Jining Medical University, 272067 Jining,
Shandong, China
- College of Second Clinical Medicine, Jining Medical University, 272067
Jining, Shandong, China
| | - Chun-Kai Huang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University,
School of Medicine, 200025 Shanghai, China
| | - Rubin Tan
- College of Basic Medical, Xuzhou Medical University, 221004 Xuzhou,
Jiangsu, China
| | - Jinxiang Yuan
- Collaborative Innovation Center for Birth Defect Research and
Transformation of Shandong Province, Jining Medical University, 272067 Jining,
Shandong, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation,
Jining Medical University, 272067 Jining, Shandong, China
| |
Collapse
|
3
|
Fernández Suárez N, Viadero Ubierna MT, Garde Basas J, Onecha de la Fuente ME, Amigo Lanza MT, Martin Gorria G, Rivas Pérez A, Ruiz Guerrero L, González-Lamuño D. Description of a Cohort with a New Truncating MYBPC3 Variant for Hypertrophic Cardiomyopathy in Northern Spain. Genes (Basel) 2023; 14:genes14040840. [PMID: 37107598 PMCID: PMC10137663 DOI: 10.3390/genes14040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Background: The pathogenicity of the different genetic variants causing hypertrophic cardiomyopathy (HCM) and the genotype/phenotype correlations are difficult to assess in clinical practice, as most mutations are unique or identified in non-informative families. Pathogenic variants in the sarcomeric gene MYBPC3 inherited with an autosomal dominant pattern, whereas incomplete and age-dependent penetrance are the most common causes of HCM. Methods: We describe the clinical characteristics of a new truncating MYBPC3 variant, p.Val931Glyfs*120, in 75 subjects from 18 different families from northern Spain with the p.Val931Glyfs*120 variant. Results: Our cohort allows us to estimate the penetrance and prognosis of this variant. The penetrance of the disease increases with age, whereas 50% of males in our sample developed HCM by the age of 36 years old, and 50% of women developed the disease by the time they reached 48 years of age (p = 0.104). Men have more documented arrhythmias with potential risk of sudden death (p = 0.018), requiring implantation of cardioverter defibrillators (p = 0.024). Semi-professional/competitive sport among males is related to earlier onset of HCM (p = 0.004). Conclusions: The p.Val931Glyfs*120 truncating variant in MYBPC3 is associated with a moderate phenotype of HCM, with a high penetrance, onset in middle age, and a worse outcome in males due to higher risk of sudden death due to arrhythmias.
Collapse
|