1
|
Ekmejian AA, Carpenter HJ, Ciofani JL, Gray BHM, Allahwala UK, Ward M, Escaned J, Psaltis PJ, Bhindi R. Advances in the Computational Assessment of Disturbed Coronary Flow and Wall Shear Stress: A Contemporary Review. J Am Heart Assoc 2024; 13:e037129. [PMID: 39291505 DOI: 10.1161/jaha.124.037129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Coronary artery blood flow is influenced by various factors including vessel geometry, hemodynamic conditions, timing in the cardiac cycle, and rheological conditions. Multiple patterns of disturbed coronary flow may occur when blood flow separates from the laminar plane, associated with inefficient blood transit, and pathological processes modulated by the vascular endothelium in response to abnormal wall shear stress. Current simulation techniques, including computational fluid dynamics and fluid-structure interaction, can provide substantial detail on disturbed coronary flow and have advanced the contemporary understanding of the natural history of coronary disease. However, the clinical application of these techniques has been limited to hemodynamic assessment of coronary disease severity, with the potential to refine the assessment and management of coronary disease. Improved computational efficiency and large clinical trials are required to provide an incremental clinical benefit of these techniques beyond existing tools. This contemporary review is a clinically relevant overview of the disturbed coronary flow and its associated pathological consequences. The contemporary methods to assess disturbed flow are reviewed, including clinical applications of these techniques. Current limitations and future opportunities in the field are also discussed.
Collapse
Affiliation(s)
- Avedis Assadour Ekmejian
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| | - Harry James Carpenter
- Vascular Research Centre Lifelong Health Theme, South Australia Health and Medical Research Institute Adelaide Australia
| | - Jonathan Laurence Ciofani
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| | | | - Usaid Khalil Allahwala
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| | - Michael Ward
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| | - Javier Escaned
- Department of Cardiology Hospital Universitario Clinico San Carlos Madrid Spain
| | - Peter James Psaltis
- Vascular Research Centre Lifelong Health Theme, South Australia Health and Medical Research Institute Adelaide Australia
- Adelaide Medical School The University of Adelaide Adelaide Australia
- Department of Cardiology Central Adelaide Local Health Network Adelaide Australia
| | - Ravinay Bhindi
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| |
Collapse
|
2
|
Wang Q, Ouyang H, Lv L, Gui L, Yang S, Hua P. Left main coronary artery morphological phenotypes and its hemodynamic properties. Biomed Eng Online 2024; 23:9. [PMID: 38254133 PMCID: PMC10804578 DOI: 10.1186/s12938-024-01205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Atherosclerosis may be linked to morphological defects that lead to variances in coronary artery hemodynamics. Few objective strategies exit at present for generalizing morphological phenotypes of coronary arteries in terms of hemodynamics. We used unsupervised clustering (UC) to classify the morphology of the left main coronary artery (LM) and looked at how hemodynamic distribution differed between phenotypes. METHODS In this study, 76 LMs were obtained from 76 patients. After LMs were reconstructed with coronary computed tomography angiography, centerlines were used to extract the geometric characteristics. Unsupervised clustering was carried out using these characteristics to identify distinct morphological phenotypes of LMs. The time-averaged wall shear stress (TAWSS) for each phenotype was investigated by means of computational fluid dynamics (CFD) analysis of the left coronary artery. RESULTS We identified four clusters (i.e., four phenotypes): Cluster 1 had a shorter stem and thinner branches (n = 26); Cluster 2 had a larger bifurcation angle (n = 10); Cluster 3 had an ostium at an angulation to the coronary sinus and a more curved stem, and thick branches (n = 10); and Cluster 4 had an ostium at an angulation to the coronary sinus and a flatter stem (n = 14). TAWSS features varied widely across phenotypes. Nodes with low TAWSS (L-TAWSS) were typically found around the branching points of the left anterior descending artery (LAD), particularly in Cluster 2. CONCLUSION Our findings demonstrated that UC is a powerful technique for morphologically classifying LMs. Different LM phenotypes exhibited distinct hemodynamic characteristics in certain regions. This morphological clustering method could aid in identifying people at high risk for developing coronary atherosclerosis, hence facilitating early intervention.
Collapse
Affiliation(s)
- Qi Wang
- Department of Cardio-Vascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yan Jiang West Road, Guangzhou, 510120, China
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Hua Ouyang
- Department of Cardio-Vascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yan Jiang West Road, Guangzhou, 510120, China
| | - Lei Lv
- Department of Cardio-Vascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yan Jiang West Road, Guangzhou, 510120, China
- Department of Cardiac and Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Long Gui
- Department of Cardio-Vascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yan Jiang West Road, Guangzhou, 510120, China
| | - Songran Yang
- Department of Biobank and Bioinformatics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yan Jiang West Road, Guangzhou, 510120, China.
| | - Ping Hua
- Department of Cardio-Vascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yan Jiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
3
|
De Nisco G, Lodi Rizzini M, Verardi R, Chiastra C, Candreva A, De Ferrari G, D'Ascenzo F, Gallo D, Morbiducci U. Modelling blood flow in coronary arteries: Newtonian or shear-thinning non-Newtonian rheology? COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107823. [PMID: 37757568 DOI: 10.1016/j.cmpb.2023.107823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND The combination of medical imaging and computational hemodynamics is a promising technology to diagnose/prognose coronary artery disease (CAD). However, the clinical translation of in silico hemodynamic models is still hampered by assumptions/idealizations that must be introduced in model-based strategies and that necessarily imply uncertainty. This study aims to provide a definite answer to the open question of how to properly model blood rheological properties in computational fluid dynamics (CFD) simulations of coronary hemodynamics. METHODS The geometry of the right coronary artery (RCA) of 144 hemodynamically stable patients with different stenosis degree were reconstructed from angiography. On them, unsteady-state CFD simulations were carried out. On each reconstructed RCA two different simulation strategies were applied to account for blood rheological properties, implementing (i) a Newtonian (N) and (ii) a shear-thinning non-Newtonian (non-N) rheological model. Their impact was evaluated in terms of wall shear stress (WSS magnitude, multidirectionality, topological skeleton) and helical flow (strength, topology) profiles. Additionally, luminal surface areas (SAs) exposed to shear disturbances were identified and the co-localization of paired N and non-N SAs was quantified in terms of similarity index (SI). RESULTS The comparison between paired N vs. shear-thinning non-N simulations revealed remarkably similar profiles of WSS-based and helicity-based quantities, independent of the adopted blood rheology model and of the degree of stenosis of the vessel. Statistically, for each paired N and non-N hemodynamic quantity emerged negligible bias from Bland-Altman plots, and strong positive linear correlation (r > 0.94 for almost all the WSS-based quantities, r > 0.99 for helicity-based quantities). Moreover, a remarkable co-localization of N vs. non-N luminal SAs exposed to disturbed shear clearly emerged (SI distribution 0.95 [0.93, 0.97]). Helical flow topology resulted to be unaffected by blood rheological properties. CONCLUSIONS This study, performed on 288 angio-based CFD simulations on 144 RCA models presenting with different degrees of stenosis, suggests that the assumptions on blood rheology have negligible impact both on WSS and helical flow profiles associated with CAD, thus definitively answering to the question "is Newtonian assumption for blood rheology adequate in coronary hemodynamics simulations?".
Collapse
Affiliation(s)
- Giuseppe De Nisco
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Maurizio Lodi Rizzini
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Roberto Verardi
- Hemodynamic Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Claudio Chiastra
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Alessandro Candreva
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Gaetano De Ferrari
- Hemodynamic Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Fabrizio D'Ascenzo
- Hemodynamic Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Diego Gallo
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
| | - Umberto Morbiducci
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
4
|
Poon EKW, Wu X, Dijkstra J, O'Leary N, Torii R, Reiber JHC, Bourantas CV, Barlis P, Onuma Y, Serruys PW. Angiography and optical coherence tomography derived shear stress: are they equivalent in my opinion? THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2023; 39:1953-1961. [PMID: 37733283 DOI: 10.1007/s10554-023-02949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Advances in image reconstruction using either single or multimodality imaging data provide increasingly accurate three-dimensional (3D) patient's arterial models for shear stress evaluation using computational fluid dynamics (CFD). We aim to evaluate the impacts on endothelial shear stress (ESS) derived from a simple image reconstruction using 3D-quantitative coronary angiography (3D-QCA) versus a multimodality reconstruction method using optical coherence tomography (OCT) in patients' vessels treated with bioresorbable scaffolds. Seven vessels at baseline and five-year follow-up of seven patients from a previous CFD investigation were retrospectively selected for a head-to-head comparison of angiography-derived versus OCT-derived ESS. 3D-QCA significantly underestimated the minimum stent area [MSA] (-2.38mm2) and the stent length (-1.46 mm) compared to OCT-fusion method reconstructions. After carefully co-registering the region of interest for all cases with a sophisticated statistical method, the difference in MSA measurements as well as the inability of angiography to visualise the strut footprint in the lumen surface have translated to higher angiography-derived ESS than OCT-derived ESS (1.76 Pa or 1.52 times for the overlapping segment). The difference in ESS widened with a more restricted region of interest (1.97 Pa or 1.63 times within the scaffold segment). Angiography and OCT offer two distinctive methods of ESS calculation. Angiography-derived ESS tends to overestimate the ESS compared to OCT-derived ESS. Further investigations into ESS analysis resolution play a vital role in adopting OCT-derived ESS.
Collapse
Affiliation(s)
- Eric K W Poon
- Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | - Xinlei Wu
- Department of Cardiology, University of Galway, Galway, Ireland
- Department of Cardiology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jouke Dijkstra
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Neil O'Leary
- Department of Cardiology, University of Galway, Galway, Ireland
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Johan H C Reiber
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christos V Bourantas
- Device and Innovation Centre, William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Cardiology, Barts Heart Centre, London, UK
| | - Peter Barlis
- Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | - Yoshinobu Onuma
- Department of Cardiology, University of Galway, Galway, Ireland
| | - Patrick W Serruys
- Department of Cardiology, University of Galway, Galway, Ireland.
- Emeritus Professor of Medicine, Erasmus University, Rotterdam, The Netherlands.
- CÚRAM, SFI Research Centre for Medical Devices, Galway, Ireland.
- School of Engineering, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
5
|
Stark AW, Giannopoulos AA, Pugachev A, Shiri I, Haeberlin A, Räber L, Obrist D, Gräni C. Application of Patient-Specific Computational Fluid Dynamics in Anomalous Aortic Origin of Coronary Artery: A Systematic Review. J Cardiovasc Dev Dis 2023; 10:384. [PMID: 37754814 PMCID: PMC10532130 DOI: 10.3390/jcdd10090384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Anomalous aortic origin of a coronary artery (AAOCA) is a rare congenital heart condition with fixed and dynamic stenotic elements, potentially causing ischemia. Invasive coronary angiography under stress is the established method for assessing hemodynamics in AAOCA, yet it is costly, technically intricate, and uncomfortable. Computational fluid dynamics (CFD) simulations offer a noninvasive alternative for patient-specific hemodynamic analysis in AAOCA. This systematic review examines the role of CFD simulations in AAOCA, encompassing patient-specific modeling, noninvasive imaging-based boundary conditions, and flow characteristics. Screening articles using AAOCA and CFD-related terms prior to February 2023 yielded 19 publications, covering 370 patients. Over the past four years, 12 (63%) publications (259 patients) employed dedicated CFD models, whereas 7 (37%) publications (111 patients) used general-purpose CFD models. Dedicated CFD models were validated for fixed stenosis but lacked dynamic component representation. General-purpose CFD models exhibited variability and limitations, with fluid-solid interaction models showing promise. Interest in CFD modeling of AAOCA has surged recently, mainly utilizing dedicated models. However, these models inadequately replicate hemodynamics, necessitating novel CFD approaches to accurately simulate pathophysiological changes in AAOCA under stress conditions.
Collapse
Affiliation(s)
- Anselm W. Stark
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.W.S.); (I.S.); (A.H.); (L.R.)
| | - Andreas A. Giannopoulos
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, 8091 Zurich, Switzerland;
| | | | - Isaac Shiri
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.W.S.); (I.S.); (A.H.); (L.R.)
| | - Andreas Haeberlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.W.S.); (I.S.); (A.H.); (L.R.)
| | - Lorenz Räber
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.W.S.); (I.S.); (A.H.); (L.R.)
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, Faculty of Medicine, University of Bern, 3008 Bern, Switzerland;
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.W.S.); (I.S.); (A.H.); (L.R.)
| |
Collapse
|
6
|
Lee CA, Farooqi HMU, Paeng DG. Axial shear rate: A hemorheological factor for erythrocyte aggregation under Womersley flow in an elastic vessel based on numerical simulation. Comput Biol Med 2023; 157:106767. [PMID: 36933414 DOI: 10.1016/j.compbiomed.2023.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Erythrocyte aggregation (EA) is a highly dynamic, vital phenomenon to interpreting human hemorheology, which would be helpful for the diagnosis and prediction of circulatory anomalies. Previous studies of EA on erythrocyte migration and the Fåhraeus Effect are based on the microvasculature. They have not considered the natural pulsatility of the blood flow or large vessels and mainly focused on shear rate along radial direction under steady flow to comprehend the dynamic properties of EA. To our knowledge, the rheological characteristics of non-Newtonian fluids under Womersley flow have not reflected the spatiotemporal behaviors of EA or the distribution of erythrocyte dynamics (ED). Hence, it needs to interpret the ED affected by temporal and spatial flow variation to understand the effect of EA under Womersley flow. Here, we demonstrated the numerically simulated ED to decipher EA's rheological role in axial shear rate under Womersley flow. In the present study, the temporal and spatial variations of the local EA were found to mainly depend on the axial shear rate under Womersley flow in an elastic vessel, while mean EA decreased with radial shear rate. The localized distribution of parabolic or M-shape clustered EA was found in a range of the axial shear rate profile (-15 to 15s-1) at low radial shear rates during a pulsatile cycle. However, the linear formation of rouleaux was realized without local clusters in a rigid wall where the axial shear rate is zero. In vivo, the axial shear rate is usually considered insignificant, especially in straight arteries, but it has a great impact on the disturbed blood flow due to the geometrical properties, such as bifurcations, stenosis, aneurysm, and the cyclic variation of pressure. Our findings regarding axial shear rate provide new insight into the local dynamic distribution of EA, which is a critical player in blood viscosity. These will provide a basis for the computer-aided diagnosis of hemodynamic-based cardiovascular diseases by decreasing the uncertainty in the pulsatile flow calculation.
Collapse
Affiliation(s)
- Cheong-Ah Lee
- Department of Ocean System Engineering, Jeju National University, Jeju-do, Republic of Korea
| | | | - Dong-Guk Paeng
- Department of Ocean System Engineering, Jeju National University, Jeju-do, Republic of Korea.
| |
Collapse
|
7
|
Evaluation of Different Cannulation Strategies for Aortic Arch Surgery Using a Cardiovascular Numerical Simulator. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010060. [PMID: 36671632 PMCID: PMC9854437 DOI: 10.3390/bioengineering10010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Aortic disease has a significant impact on quality of life. The involvement of the aortic arch requires the preservation of blood supply to the brain during surgery. Deep hypothermic circulatory arrest is an established technique for this purpose, although neurological injury remains high. Additional techniques have been used to reduce risk, although controversy still remains. A three-way cannulation approach, including both carotid arteries and the femoral artery or the ascending aorta, has been used successfully for aortic arch replacement and redo procedures. We developed circuits of the circulation to simulate blood flow during this type of cannulation set up. The CARDIOSIM© cardiovascular simulation platform was used to analyse the effect on haemodynamic and energetic parameters and the benefit derived in terms of organ perfusion pressure and flow. Our simulation approach based on lumped-parameter modelling, pressure-volume analysis and modified time-varying elastance provides a theoretical background to a three-way cannulation strategy for aortic arch surgery with correlation to the observed clinical practice.
Collapse
|
8
|
Avtaar Singh SS, Nappi F. Pathophysiology and Outcomes of Endothelium Function in Coronary Microvascular Diseases: A Systematic Review of Randomized Controlled Trials and Multicenter Study. Biomedicines 2022; 10:biomedicines10123010. [PMID: 36551766 PMCID: PMC9775403 DOI: 10.3390/biomedicines10123010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Coronary macrovascular disease is a concept that has been well-studied within the literature and has long been the subject of debates surrounding coronary artery bypass grafting (CABG) vs. Percutaneous Coronary Intervention (PCI). ISCHEMIA trial reported no statistical difference in the primary clinical endpoint between initial invasive management and initial conservative management, while in the ORBITA trial PCI did not improve angina frequency score significantly more than placebo, albeit PCI resulted in more patient-reported freedom from angina than placebo. However, these results did not prove the superiority of the PCI against OMT, therefore do not indicate the benefit of PCI vs. the OMT. Please rephrase the sentence. We reviewed the role of different factors responsible for endothelial dysfunction from recent randomized clinical trials (RCTs) and multicentre studies. METHODS A detailed search strategy was performed using a dataset that has previously been published. Data of pooled analysis include research articles (human and animal models), CABG, and PCI randomized controlled trials (RCTs). Details of the search strategy and the methods used for data pooling have been published previously and registered with Open-Source Framework. RESULTS The roles of nitric oxide (NO), endothelium-derived contracting factors (EDCFs), and vasodilator prostaglandins (e.g., prostacyclin), as well as endothelium-dependent hyperpolarization (EDH) factors, are crucial for the maintenance of vasomotor tone within the coronary vasculature. These homeostatic mechanisms are affected by sheer forces and other several factors that are currently being studied, such as vaping. The role of intracoronary testing is crucial when determining the effects of therapeutic medications with further studies on the horizon. CONCLUSION The true impact of coronary microvascular dysfunction (CMD) is perhaps underappreciated, which supports the role of medical therapy in determining outcomes. Ongoing trials are underway to further investigate the role of therapeutic agents in secondary prevention.
Collapse
Affiliation(s)
| | - Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord of Saint-Denis, 93200 Saint-Denis, France
- Correspondence: ; Tel.: +33-(14)-9334104; Fax: +33-149334119
| |
Collapse
|