1
|
Farkas-Sütő KA, Grebur K, Mester B, Gyulánczi FK, Bödör C, Vágó H, Merkely B, Szűcs A. Electrocardiogram Features of Left Ventricular Excessive Trabeculation with Preserved Cardiac Function in Light of Cardiac Magnetic Resonance and Genetics. J Clin Med 2024; 13:5906. [PMID: 39407966 PMCID: PMC11477278 DOI: 10.3390/jcm13195906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Background and Objectives: Although left ventricular excessive trabeculation (LVET) can cause heart failure, arrhythmia and thromboembolism, limited literature is available on the ECG characteristics of primary LVET with preserved left ventricular function (EF). We aimed to compare the ECG characteristics and cardiac MR (CMR) parameters of LVET individuals with preserved left ventricular EF to a control (C) group, to identify sex-specific differences, and to compare the genetic subgroups of LVET with each other and with a C population. Methods: In our study, we selected 69 LVET individuals (EF > 50%) without any comorbidities and compared them to 69 sex- and age-matched control subjects (42% females in both groups, p = 1.000; mean age LVET-vs-C: 38 ± 14 vs. 38 ± 14 years p = 0.814). We analyzed the pattern and notable parameters of the 12-lead ECG recordings. We determined the volumetric and functional parameters, as well as the muscle mass values of the left and right ventricles (LV, RV) based on the CMR recordings. Based on the genotype, three subgroups were established: pathogenic, variant of uncertain significance and benign. Results: In the LVET group, we found normal but elevated volumetric and muscle mass values and a decreased LV_EF, wider QRS, prolonged QTc, higher RV Sokolow index values and lower T wave amplitude compared to the C. When comparing MR and ECG parameters between genetic subgroups, only the QTc showed a significant difference. Over one-third of the LVET population had arrhythmic episodes and a positive family history. Conclusions: The subclinical morphological and ECG changes and the clinical background of the LVET group indicate the need for follow-up of this population, even with preserved EF.
Collapse
Affiliation(s)
- Kristóf Attila Farkas-Sütő
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68., 1122 Budapest, Hungary; (K.A.F.-S.)
| | - Kinga Grebur
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68., 1122 Budapest, Hungary; (K.A.F.-S.)
| | - Balázs Mester
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68., 1122 Budapest, Hungary; (K.A.F.-S.)
| | - Flóra Klára Gyulánczi
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68., 1122 Budapest, Hungary; (K.A.F.-S.)
| | - Csaba Bödör
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., 1085 Budapest, Hungary
| | - Hajnalka Vágó
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68., 1122 Budapest, Hungary; (K.A.F.-S.)
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68., 1122 Budapest, Hungary; (K.A.F.-S.)
| | - Andrea Szűcs
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68., 1122 Budapest, Hungary; (K.A.F.-S.)
| |
Collapse
|
2
|
Visoiu IS, Jensen B, Rimbas RC, Mihaila-Baldea S, Nicula AI, Vinereanu D. How the trabecular layer impacts on left ventricular function. J Cardiol 2024:S0914-5087(24)00168-0. [PMID: 39214511 DOI: 10.1016/j.jjcc.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The ventricular trabecular layer is crucial in embryonic life. In adults, the proportion of trabecular-to-compact myocardium varies substantially between individuals, within individuals over time, and yet exhibits almost no correlation to pump function since most individuals with excessive trabeculation are asymptomatic. The question of how functional is the myocardium of the trabecular layer, relative to the myocardium of the compact layer, has been difficult to answer but it is often assumed to be inferior. An answer is now emerging from recent advances and it can improve our understanding of how the trabecular layer impacts on pathogenicity. This narrative review concerns natural variation in trabeculation, tissue organization, transcriptomics, immunohistochemistry, vascularization, electrical propagation, diastolic function and compliance, systolic function, and ejection fraction. There are no overt transcriptional differences in the adult stage, and the myocardium is equally equipped with sarcomeric proteins, mitochondria, and vascular supply. The similar structural features are consistent with myocardium with a similar stroke work per gram tissue, along with a high ejection fraction of the trabecular layer. In conclusion, the myocardium of the trabecular and compact layers is highly similar and this offers a logical explanation for the reproducible observations that most individuals with excessive trabeculation are asymptomatic.
Collapse
Affiliation(s)
- Ionela Simona Visoiu
- Department of Cardiology and Cardiovascular Surgery, SEARCH-VASC Center of Excellence, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Roxana Cristina Rimbas
- Department of Cardiology and Cardiovascular Surgery, SEARCH-VASC Center of Excellence, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| | - Sorina Mihaila-Baldea
- Department of Cardiology and Cardiovascular Surgery, SEARCH-VASC Center of Excellence, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| | - Alina Ioana Nicula
- Department of Radiology, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| | - Dragos Vinereanu
- Department of Cardiology and Cardiovascular Surgery, SEARCH-VASC Center of Excellence, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| |
Collapse
|
3
|
Yang W, Xu J, Zhu L, Zhang Q, Wang Y, Zhao S, Lu M. Myocardial Strain Measurements Derived From MR Feature-Tracking: Influence of Sex, Age, Field Strength, and Vendor. JACC Cardiovasc Imaging 2024; 17:364-379. [PMID: 37480906 DOI: 10.1016/j.jcmg.2023.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Cardiac magnetic resonance feature tracking (CMR-FT) is a novel technique for assessing myocardial deformation and dysfunction. However, a comprehensive assessment of normal values of strain parameters in all 4 cardiac chambers using different vendors is lacking. OBJECTIVES This study aimed to characterize the normal values for myocardial strain in all 4 cardiac chambers and identify factors that contribute to variations in FT strain through a systematic review and meta-analysis of the CMR-FT published reports. METHODS The investigators searched PubMed, Embase, and Scopus for myocardial strains of all 4 chambers measured by CMR-FT in healthy adults. The pooled means of all strain parameters were generated using a random-effects model. Subgroup analyses and meta-regressions were performed to identify the sources of variations. RESULTS This meta-analysis included 44 studies with a total of 3,359 healthy subjects. The pooled means of left ventricular global longitudinal strain (LV-GLS), LV global radial strain, and LV global circumferential strain (GCS) were -18.4% (95% CI: -19.2% to -17.6%), 43.7% (95% CI: 40.0%-47.4%), and -21.4% (95% CI: -22.3% to -20.6%), respectively. The pooled means of left atrial (LA)-GLS (corresponding to total strain, passive strain, and active strain) were 34.9% (95% CI: 29.6%-40.2%), 21.3% (95% CI: 16.6%-26.1%) and 14.3% (95% CI: 11.8%-16.8%), respectively. The pooled means of right ventricular (RV)-GLS and right atrial global longitudinal total strain were -24.0% (95% CI: -25.8% to -22.1%) and 36.3% (95% CI: 15.5%-57.0%), respectively. Meta-regression identified field strength (P < 0.001; I2 = 98.6%) and FT vendor (P < 0.001; I2 = 98.5%) as significant confounders contributing to heterogeneity of LV-GLS. The variations of LA-GLSactive were associated with regional distribution (P < 0.001; I2 = 97.3%) and FT vendor (P < 0.001; I2 = 97.4%). Differences in FT vendor were attributed to variations of LV-GCS and RV-GLS (P = 0.02; I2 = 98.8% and P = 0.01; I2 = 93.8%). CONCLUSIONS This study demonstrated the normal values of CMR-FT strain parameters in all 4 cardiac chambers in healthy subjects. Differences in FT vendor contributed to the heterogeneity of LV-GLS, LV-GCS, LA-GLSactive, and RV-GLS, whereas sex, age, and MR vendor had no effect on the normal values of CMR-FT strain measurements.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Xu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leyi Zhu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Zhang
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, National Institute for Health Research Oxford Biomedical Research Centre, Oxford British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Yining Wang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, China.
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Grebur K, Mester B, Fekete BA, Kiss AR, Gregor Z, Horváth M, Farkas-Sütő K, Csonka K, Bödör C, Merkely B, Vágó H, Szűcs A. Genetic, clinical and imaging implications of a noncompaction phenotype population with preserved ejection fraction. Front Cardiovasc Med 2024; 11:1337378. [PMID: 38380180 PMCID: PMC10876896 DOI: 10.3389/fcvm.2024.1337378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction The genotype of symptomatic left ventricular noncompaction phenotype (LVNC) subjects with preserved left ventricular ejection fraction (LVEF) and its effect on clinical presentation are less well studied. We aimed to characterize the genetic, cardiac magnetic resonance (CMR) and clinical background, and genotype-phenotype relationship in LVNC with preserved LVEF. Methods We included 54 symptomatic LVNC individuals (LVEF: 65 ± 5%) whose samples were analyzed with a 174-gene next-generation sequencing panel and 54 control (C) subjects. The results were evaluated using the criteria of the American College of Medical Genetics and Genomics. Medical data suggesting a higher risk of cardiovascular complications were considered "red flags". Results Of the LVNC population, 24% carried pathogenic or likely pathogenic (P) mutations; 56% carried variants of uncertain significance (VUS); and 20% were free from cardiomyopathy-related mutations. Regarding the CMR parameters, the LVNC and C groups differed significantly, while the three genetic subgroups were comparable. We found a significant relationship between red flags and genotype; furthermore, the number of red flags in a single subject differed significantly among the genetic subgroups (p = 0.002) and correlated with the genotype (r = 0.457, p = 0.01). In 6 out of 7 LVNC subjects diagnosed in childhood, P or VUS mutations were found. Discussion The large number of P mutations and the association between red flags and genotype underline the importance of genetic-assisted risk stratification in symptomatic LVNC with preserved LVEF.
Collapse
Affiliation(s)
- Kinga Grebur
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Balázs Mester
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Bálint András Fekete
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Anna Réka Kiss
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zsófia Gregor
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Márton Horváth
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Katalin Csonka
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Hajnalka Vágó
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Andrea Szűcs
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Nemes A. Myocardial Mechanics and Associated Valvular and Vascular Abnormalities in Left Ventricular Noncompaction Cardiomyopathy. J Clin Med 2023; 13:78. [PMID: 38202085 PMCID: PMC10779999 DOI: 10.3390/jcm13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Left ventricular (LV) non-compaction (LVNC) is a rare genetic cardiomyopathy due to abnormal intra-uterine arrest of compaction of the myocardial fibers during endomyocardial embryogenesis. Due to the partial or complete absence of LV compaction, the structure of the LV wall shows characteristic abnormalities, including a thin compacted epicardium and a thick non-compacted endocardium with prominent trabeculations and deep intertrabecular recesses. LVNC is frequently associated with chronic heart failure, life-threatening ventricular arrhythmias, and systemic embolic events. According to recent findings, in the presence of LVNC, dysfunctional LV proved to be associated with left atrial volumetric and functional abnormalities and consequential dilated and functionally impaired mitral annulus, partly explaining the higher prevalence of regurgitation. Although the non-compaction process morphologically affects only the LV, signs of remodeling of the right heart were also detected. Moreover, dilation and stiffening of the aorta were present. The aim of the present detailed review was to summarize findings regarding changes in cardiac mechanics, valvular abnormalities, and vascular remodeling detected in patients with LVNC.
Collapse
Affiliation(s)
- Attila Nemes
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| |
Collapse
|
6
|
Horváth M, Farkas-Sütő K, Fábián A, Lakatos B, Kiss AR, Grebur K, Gregor Z, Mester B, Kovács A, Merkely B, Szűcs A. Highlights of right ventricular characteristics of left ventricular noncompaction using 3D echocardiography. IJC HEART & VASCULATURE 2023; 49:101289. [PMID: 38035261 PMCID: PMC10684825 DOI: 10.1016/j.ijcha.2023.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023]
Abstract
Highlights of right ventricular characteristics of left ventricular noncompaction using 3D echocardiography. The aspects of right ventricular volumes and function investigated with 3D echocardiography in a large cohort of left ventricular noncompaction morphology (LVNC) population remains unclear. The objective of our research was to study the left (LV) and right (RV) ventricular parameters using 3D echocardiography and analyze the clinical features of a LVNC population with preserved LV ejection fraction (EF > 50 %) in comparison with healthy controls (HC). We selected 41 LVNC subjects with preserved LV function (EF: 52.91 ± 3 %, male n = 26) and without any comorbidities and compared them with an age and sex-matched HC. Three dimensional endocardial contours were evaluated to determine the following LV and RV parameters: end-diastolic (EDV) and end-systolic (ESV) volumes, stroke volume, EF, LV global longitudinal and circumferential strain and RV septal and free wall longitudinal strain. Regarding the clinical characteristics, the family involvement had a notable proportion, accounting for 51%. The EF and strain values of the LVNC population were significantly decreased in both RV and LV compared to HC. Although the LV volumes of the LVNC group were significantly elevated, the RV volumetric parameters did not differ significantly compared to controls. We found significant correlations between LV and RV volumetric and functional parameters and linear regression models showed that LV EDV and LV ESV determined the RV volumetric values. While the alteration and relationship of the RV parameters may represent the potential of biventricular involvement, clinical characteristics of the LVNC group underlines the necessity of monitoring this population, even with preserved EF.
Collapse
Affiliation(s)
- Márton Horváth
- Heart and Vascular Center of Semmelweis University, Városmajor str. 68, 1122 Budapest, Hungary
| | - Kristóf Farkas-Sütő
- Heart and Vascular Center of Semmelweis University, Városmajor str. 68, 1122 Budapest, Hungary
| | - Alexandra Fábián
- Heart and Vascular Center of Semmelweis University, Városmajor str. 68, 1122 Budapest, Hungary
| | - Bálint Lakatos
- Heart and Vascular Center of Semmelweis University, Városmajor str. 68, 1122 Budapest, Hungary
| | - Anna Réka Kiss
- Heart and Vascular Center of Semmelweis University, Városmajor str. 68, 1122 Budapest, Hungary
| | - Kinga Grebur
- Heart and Vascular Center of Semmelweis University, Városmajor str. 68, 1122 Budapest, Hungary
| | - Zsófia Gregor
- Heart and Vascular Center of Semmelweis University, Városmajor str. 68, 1122 Budapest, Hungary
| | - Balázs Mester
- Heart and Vascular Center of Semmelweis University, Városmajor str. 68, 1122 Budapest, Hungary
| | - Attila Kovács
- Heart and Vascular Center of Semmelweis University, Városmajor str. 68, 1122 Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center of Semmelweis University, Városmajor str. 68, 1122 Budapest, Hungary
| | - Andrea Szűcs
- Heart and Vascular Center of Semmelweis University, Városmajor str. 68, 1122 Budapest, Hungary
| |
Collapse
|