1
|
Van Gelder IC, Rienstra M, Bunting KV, Casado-Arroyo R, Caso V, Crijns HJGM, De Potter TJR, Dwight J, Guasti L, Hanke T, Jaarsma T, Lettino M, Løchen ML, Lumbers RT, Maesen B, Mølgaard I, Rosano GMC, Sanders P, Schnabel RB, Suwalski P, Svennberg E, Tamargo J, Tica O, Traykov V, Tzeis S, Kotecha D. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2024; 45:3314-3414. [PMID: 39210723 DOI: 10.1093/eurheartj/ehae176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
|
2
|
Zhao Z, Wang Y, Jiang C, Yang Z, Zhang J, Lai Y, Wang J, Li S, Peng X, Li M, Li E, Guo H, Li J, Kong X, He L, Zuo S, Guo X, Li S, Liu N, Tang R, Sang C, Long D, Du X, He L, Dong J, Ma C. Impact of sodium-glucose cotransporter 2 inhibitor on recurrence and cardiovascular outcomes after catheter ablation for atrial fibrillation in patients with heart failure. Heart Rhythm 2024:S1547-5271(24)03153-9. [PMID: 39168296 DOI: 10.1016/j.hrthm.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND The impact of sodium-glucose cotransporter 2 inhibitors (SGLT2i) on atrial fibrillation (AF) recurrence outcomes and adverse cardiovascular outcomes in heart failure (HF) patients after AF ablation is unknown. OBJECTIVE We investigated whether SGLT2i reduces the risk of AF recurrence and adverse cardiovascular outcomes in HF patients after AF ablation. METHODS HF patients with AF undergoing catheter ablation between January 2017 and December 2022 from the China-AF Registry were included. Patients were stratified into 2 groups on the basis of the use of SGLT2i at discharge and were 1:1 matched by propensity score, with SGLT2i using (n = 368) and non-SGLT2i using (n = 368) in each group. The primary outcome was AF recurrence after a 3-month blanking period. RESULTS During a total of 1315 person-years of follow-up, AF recurred in 83 patients (22.6%) in the SGLT2i group and 132 patients (35.8%) in the non-SGLT2i group. SGLT2i was associated with a lower risk of AF recurrence (adjusted hazard ratio, 0.56; 95% CI, 0.43-0.74; P < .001). The composite risk of cardiovascular death, thrombotic events, or cardiovascular hospitalization was significantly lower in the SGLT2i group compared with those without SGLT2i (adjusted hazard ratio, 0.58; 95% CI, 0.41-0.80; P = .001). Although there was a trend toward benefit, the differences in all-cause mortality, cardiovascular death, or thrombotic events were insignificant between the 2 groups. CONCLUSION The use of SGLT2i was associated with a lower risk of AF recurrence and the composite outcome of cardiovascular death, thrombotic events, or cardiovascular hospitalization after catheter ablation for AF in patients with HF.
Collapse
Affiliation(s)
- Zixu Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Yiping Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Chao Jiang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China.
| | - Zejun Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Jingrui Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Yiwei Lai
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Jue Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Sitong Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xiaodong Peng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Mingxiao Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Enze Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Hang Guo
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Jiahe Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xiangyi Kong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Liu He
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Song Zuo
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xueyuan Guo
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Songnan Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Ribo Tang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Caihua Sang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Deyong Long
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xin Du
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China; Heart Health Research Center, Beijing, China
| | - Liping He
- Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China.
| | - Jianzeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University and National Clinical Research Center for Cardiovascular Diseases, Beijing, China.
| |
Collapse
|
3
|
Kistler PM, Sanders P, Amarena JV, Bain CR, Chia KM, Choo WK, Eslick AT, Hall T, Hopper IK, Kotschet E, Lim HS, Ling LH, Mahajan R, Marasco SF, McGuire MA, McLellan AJ, Pathak RK, Phillips KP, Prabhu S, Stiles MK, Sy RW, Thomas SP, Toy T, Watts TW, Weerasooriya R, Wilsmore BR, Wilson L, Kalman JM. 2023 Cardiac Society of Australia and New Zealand Expert Position Statement on Catheter and Surgical Ablation for Atrial Fibrillation. Heart Lung Circ 2024; 33:828-881. [PMID: 38702234 DOI: 10.1016/j.hlc.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 05/06/2024]
Abstract
Catheter ablation for atrial fibrillation (AF) has increased exponentially in many developed countries, including Australia and New Zealand. This Expert Position Statement on Catheter and Surgical Ablation for Atrial Fibrillation from the Cardiac Society of Australia and New Zealand (CSANZ) recognises healthcare factors, expertise and expenditure relevant to the Australian and New Zealand healthcare environments including considerations of potential implications for First Nations Peoples. The statement is cognisant of international advice but tailored to local conditions and populations, and is intended to be used by electrophysiologists, cardiologists and general physicians across all disciplines caring for patients with AF. They are also intended to provide guidance to healthcare facilities seeking to establish or maintain catheter ablation for AF.
Collapse
Affiliation(s)
- Peter M Kistler
- The Alfred Hospital, Melbourne, Vic, Australia; The Baker Heart and Diabetes Research Institute, Melbourne, Vic, Australia; University of Melbourne, Melbourne, Vic, Australia; Monash University, Melbourne, Vic, Australia.
| | - Prash Sanders
- University of Adelaide, Adelaide, SA, Australia; Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | - Chris R Bain
- The Alfred Hospital, Melbourne, Vic, Australia; Monash University, Melbourne, Vic, Australia
| | - Karin M Chia
- Royal North Shore Hospital, Sydney, NSW, Australia
| | - Wai-Kah Choo
- Gold Coast University Hospital, Gold Coast, Qld, Australia; Royal Darwin Hospital, Darwin, NT, Australia
| | - Adam T Eslick
- University of Sydney, Sydney, NSW, Australia; The Canberra Hospital, Canberra, ACT, Australia
| | | | - Ingrid K Hopper
- The Alfred Hospital, Melbourne, Vic, Australia; Monash University, Melbourne, Vic, Australia
| | - Emily Kotschet
- Victorian Heart Hospital, Monash Health, Melbourne, Vic, Australia
| | - Han S Lim
- University of Melbourne, Melbourne, Vic, Australia; Austin Health, Melbourne, Vic, Australia; Northern Health, Melbourne, Vic, Australia
| | - Liang-Han Ling
- The Alfred Hospital, Melbourne, Vic, Australia; The Baker Heart and Diabetes Research Institute, Melbourne, Vic, Australia; University of Melbourne, Melbourne, Vic, Australia
| | - Rajiv Mahajan
- University of Adelaide, Adelaide, SA, Australia; Lyell McEwin Hospital, Adelaide, SA, Australia
| | - Silvana F Marasco
- The Alfred Hospital, Melbourne, Vic, Australia; Monash University, Melbourne, Vic, Australia
| | | | - Alex J McLellan
- University of Melbourne, Melbourne, Vic, Australia; Royal Melbourne Hospital, Melbourne, Vic, Australia; St Vincent's Hospital, Melbourne, Vic, Australia
| | - Rajeev K Pathak
- Australian National University and Canberra Heart Rhythm, Canberra, ACT, Australia
| | - Karen P Phillips
- Brisbane AF Clinic, Greenslopes Private Hospital, Brisbane, Qld, Australia
| | - Sandeep Prabhu
- The Alfred Hospital, Melbourne, Vic, Australia; The Baker Heart and Diabetes Research Institute, Melbourne, Vic, Australia; University of Melbourne, Melbourne, Vic, Australia; Monash University, Melbourne, Vic, Australia
| | - Martin K Stiles
- Waikato Clinical School, University of Auckland, Hamilton, New Zealand
| | - Raymond W Sy
- Royal Prince Alfred Hospital, Sydney, NSW, Australia; Concord Repatriation General Hospital, Sydney, NSW, Australia
| | - Stuart P Thomas
- University of Sydney, Sydney, NSW, Australia; Westmead Hospital, Sydney, NSW, Australia
| | - Tracey Toy
- The Alfred Hospital, Melbourne, Vic, Australia
| | - Troy W Watts
- Royal Melbourne Hospital, Melbourne, Vic, Australia
| | - Rukshen Weerasooriya
- Hollywood Private Hospital, Perth, WA, Australia; University of Western Australia, Perth, WA, Australia
| | | | | | - Jonathan M Kalman
- University of Melbourne, Melbourne, Vic, Australia; Royal Melbourne Hospital, Melbourne, Vic, Australia
| |
Collapse
|
4
|
Zaher W, Della Rocca DG, Pannone L, Boveda S, de Asmundis C, Chierchia GB, Sorgente A. Anti-Arrhythmic Effects of Heart Failure Guideline-Directed Medical Therapy and Their Role in the Prevention of Sudden Cardiac Death: From Beta-Blockers to Sodium-Glucose Cotransporter 2 Inhibitors and Beyond. J Clin Med 2024; 13:1316. [PMID: 38592135 PMCID: PMC10931968 DOI: 10.3390/jcm13051316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024] Open
Abstract
Sudden cardiac death (SCD) accounts for a substantial proportion of mortality in heart failure with reduced ejection fraction (HFrEF), frequently triggered by ventricular arrhythmias (VA). This review aims to analyze the pathophysiological mechanisms underlying VA and SCD in HFrEF and evaluate the effectiveness of guideline-directed medical therapy (GDMT) in reducing SCD. Beta-blockers, angiotensin receptor-neprilysin inhibitors, and mineralocorticoid receptor antagonists have shown significant efficacy in reducing SCD risk. While angiotensin-converting enzyme inhibitors and angiotensin receptor blockers exert beneficial impacts on the renin-angiotensin-aldosterone system, their direct role in SCD prevention remains less clear. Emerging treatments like sodium-glucose cotransporter 2 inhibitors show promise but necessitate further research for conclusive evidence. The favorable outcomes of those molecules on VA are notably attributable to sympathetic nervous system modulation, structural remodeling attenuation, and ion channel stabilization. A multidimensional pharmacological approach targeting those pathophysiological mechanisms offers a complete and synergy approach to reducing SCD risk, thereby highlighting the importance of optimizing GDMT for HFrEF. The current landscape of HFrEF pharmacotherapy is evolving, with ongoing research needed to clarify the full extent of the anti-arrhythmic benefits offered by both existing and new treatments.
Collapse
Affiliation(s)
- Wael Zaher
- Department of Cardiology, Centre Hospitalier EpiCURA, Route de Mons 63, 7301 Hornu, Belgium;
| | - Domenico Giovanni Della Rocca
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklan 101, Jette, 1090 Brussels, Belgium; (D.G.D.R.); (L.P.); (C.d.A.); (G.-B.C.)
| | - Luigi Pannone
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklan 101, Jette, 1090 Brussels, Belgium; (D.G.D.R.); (L.P.); (C.d.A.); (G.-B.C.)
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, 31076 Toulouse, France;
| | - Carlo de Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklan 101, Jette, 1090 Brussels, Belgium; (D.G.D.R.); (L.P.); (C.d.A.); (G.-B.C.)
| | - Gian-Battista Chierchia
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklan 101, Jette, 1090 Brussels, Belgium; (D.G.D.R.); (L.P.); (C.d.A.); (G.-B.C.)
| | - Antonio Sorgente
- Department of Cardiology, Centre Hospitalier EpiCURA, Route de Mons 63, 7301 Hornu, Belgium;
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklan 101, Jette, 1090 Brussels, Belgium; (D.G.D.R.); (L.P.); (C.d.A.); (G.-B.C.)
| |
Collapse
|
5
|
Wang X, Zhang X, Zhang W, Li J, Weng W, Li Q. Association of Sodium-Glucose Cotransporter 2 Inhibitors (SGLT2i) with Cardiac Arrhythmias: A Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials. Rev Cardiovasc Med 2023; 24:258. [PMID: 39076384 PMCID: PMC11262450 DOI: 10.31083/j.rcm2409258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/12/2023] [Accepted: 04/07/2023] [Indexed: 07/31/2024] Open
Abstract
Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a class of widely used hypoglycemic agents for the treatment of type 2 diabetes mellitus (T2DM). In addition to lowering blood glucose, SGLT2i protects the heart and kidney, significantly reduces cardiovascular events, and delays the progression of heart failure and chronic kidney disease. However, previous studies have not exhaustively discussed the association between SGLT2i and the risk of developing cardiac arrhythmias. The purpose of this study is to assess the association of SGLT2i with cardiac arrhythmias in patients with T2DM and without T2DM in cardiovascular outcome trials (CVOTs). Methods We performed a meta-analysis and systematic review of CVOTs that compared SGLT2i with placebo. MEDLINE, Web of Science, The Cochrane Library and Embase were systematically searched from inception to December 2022. We included CVOTs reporting cardiovascular or renal outcomes with a follow-up duration of at least 6 months. Results A total of 12 CVOTs with 77,470 participants were included in this meta-analysis (42,016 SGLT2i vs 35,454 control), including patients with T2DM, heart failure (HF), or chronic kidney disease (CKD). Follow-up duration ranged from 9 months to 5.65 years. Medications included empagliflozin, canagliflozin, dapagliflozin and ertugliflozin. SGLT2i were associated with a lower risk of tachycardia (risk ratio (RR) 0.86; 95% confidence interval (CI) 0.79-0.95), supraventricular tachycardia (SVT; RR 0.84; 95% CI 0.75-0.94), atrial fibrillation (AF; RR 0.86; 95% CI 0.75-0.97) and atrial flutter (AFL; RR 0.75; 95% CI 0.57-0.99) in patients with T2DM, HF and CKD. SGLT2i could also reduce the risk of cardiac arrest in CKD patients (RR 0.50; 95% CI 0.26-0.95). Besides, SGLT2i therapy was not associated with a lower risk of ventricular arrhythmia and bradycardia. Conclusions SGLT2i therapy is associated with significantly reduced the risk of tachycardia, SVT, AF, and AFL in patients with T2DM, HF, and CKD. In addition, SGLT2i could also reduce the risk of cardiac arrest in CKD patients. Further researches are needed to fully elucidate the antiarrhythmic mechanism of SGLT2i.
Collapse
Affiliation(s)
- Xujie Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091
Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, 100091
Beijing, China
| | - Xuexue Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091
Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, 100091
Beijing, China
| | - Wantong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091
Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, 100091
Beijing, China
- Institute of Clinical Pharmacology, China Academy of Chinese Medical
Sciences, 100091 Beijing, China
| | - Jiaxi Li
- The First Clinical College, Shanxi University of Chinese Medicine, 030024
Taiyuan, Shanxi, China
| | - Weiliang Weng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091
Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, 100091
Beijing, China
- Institute of Clinical Pharmacology, China Academy of Chinese Medical
Sciences, 100091 Beijing, China
| | - Qiuyan Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091
Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, 100091
Beijing, China
| |
Collapse
|
6
|
Ouyang X, Wang J, Chen Q, Peng L, Li S, Tang X. Sodium-glucose cotransporter 2 inhibitor may not prevent atrial fibrillation in patients with heart failure: a systematic review. Cardiovasc Diabetol 2023; 22:124. [PMID: 37226247 DOI: 10.1186/s12933-023-01860-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Atrial fibrillation (AF) and heart failure (HF) frequently coexist because of their similar pathological basis. However, whether sodium-glucose cotransporter 2 inhibitor (SGLT2i), a novel class of anti-HF medication, decreases the risk of AF in HF patients remains unclear. OBJECTIVES The aim of this study was to assess the relationship between SGLT2i and AF in HF patients. METHODS A meta-analysis of randomized controlled trails evaluating the effects of SGLT2i on AF in HF patients was performed. PubMed and ClinicalTrails.gov were searched for eligible studies until 27 November 2022. The risk of bias and quality of evidence were assessed through the Cochrane tool. Pooled risk ratio of AF for SGLT2i versus placebo in eligible studies was calculated. RESULTS A total of 10 eligible RCTs examining 16,579 patients were included in the analysis. AF events occurred in 4.20% (348/8292) patients treated with SGLT2i, and in 4.57% (379/8287) patients treated with placebo. Meta-analysis showed that SGLT2i did not significantly reduce the risk of AF (RR 0.92; 95% CI 0.80-1.06; p = 0.23) in HF patients when compared to placebo. Similar results remained in the subgroup analyses, regardless of the type of SGLT2i, the type of HF, and the duration of follow-up. CONCLUSIONS Current evidences showed that SGLT2i may have no preventive effects on the risk of AF in patients with HF. TRANSLATIONAL PERSPECTIVE Despite HF being one of the most common heart diseases and conferring increased risk for AF, affective prevention of AF in HF patients is still unresolved. The present meta-analysis demonstrated that SGLT2i may have no preventive effects on reducing AF in patients with HF. How to effectively prevent and early detect the occurrence of AF is worth discussing.
Collapse
Affiliation(s)
- Xiaolan Ouyang
- Department of Cardiovascular Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiafu Wang
- Department of Cardiovascular Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Chen
- Department of Cardiovascular Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Long Peng
- Department of Cardiovascular Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Suhua Li
- Department of Cardiovascular Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xixiang Tang
- VIP medical service center, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Xanthopoulos A, Skoularigis J, Triposkiadis F. The Neurohormonal Overactivity Syndrome in Heart Failure. Life (Basel) 2023; 13:life13010250. [PMID: 36676199 PMCID: PMC9864042 DOI: 10.3390/life13010250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Heart failure (HF) is categorized arbitrarily based on the left ventricular ejection fraction (LVEF) in HF with reduced (HFrEF; LVEF < 40%), mildly reduced (HFmrEF; LVEF 40−49%), or preserved ejection fraction (HFpEF; LVEF ≥ 50%). In this opinion paper, based on (patho)physiological considerations, we contend that the neurohormonal overactivity syndrome (NOHS), which is present in all symptomatic HF patients irrespective of their LVEF, not only contributes to the development of signs and symptoms but it is also a major determinant of patients’ outcomes. In this regard, NHOS is the only currently available treatment target in HF and should be combatted in most patients with the combined use of diuretics and neurohormonal inhibitors (β-blockers, angiotensin receptor-neprilysin inhibitor/angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, mineralocorticoid antagonists, and sodium-glucose co-transporter 2 inhibitors). Unfortunately, despite the advances in therapeutics, HF mortality remains high. Probably machine learning approaches could better assess the multiple and higher-dimension interactions leading to the HF syndrome and define clusters of HF treatment efficacy.
Collapse
|
8
|
Scheen AJ. Antidiabetic agents and risk of atrial fibrillation/flutter: A comparative critical analysis with a focus on differences between SGLT2 inhibitors and GLP-1 receptor agonists. DIABETES & METABOLISM 2022; 48:101390. [DOI: 10.1016/j.diabet.2022.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 04/11/2023]
|
9
|
Scheen AJ. Glucose-lowering agents and risk of ventricular arrhythmias and sudden cardiac death: a comprehensive review ranging from sulphonylureas to SGLT2 inhibitors. DIABETES & METABOLISM 2022; 48:101405. [DOI: 10.1016/j.diabet.2022.101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
10
|
Cesaro A, Gragnano F, Paolisso P, Bergamaschi L, Gallinoro E, Sardu C, Mileva N, Foà A, Armillotta M, Sansonetti A, Amicone S, Impellizzeri A, Esposito G, Morici N, Oreglia JA, Casella G, Mauro C, Vassilev D, Galie N, Santulli G, Pizzi C, Barbato E, Calabrò P, Marfella R. In-hospital arrhythmic burden reduction in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: Insights from the SGLT2-I AMI PROTECT study. Front Cardiovasc Med 2022; 9:1012220. [PMID: 36237914 PMCID: PMC9551177 DOI: 10.3389/fcvm.2022.1012220] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2023] Open
Abstract
Background Sodium-glucose co-transporter 2 inhibitors (SGLT2-i) have shown significant cardiovascular benefits in patients with and without type 2 diabetes mellitus (T2DM). They have also gained interest for their potential anti-arrhythmic role and their ability to reduce the occurrence of atrial fibrillation (AF) and ventricular arrhythmias (VAs) in T2DM and heart failure patients. Objectives To investigate in-hospital new-onset cardiac arrhythmias in a cohort of T2DM patients presenting with acute myocardial infarction (AMI) treated with SGLT2-i vs. other oral anti-diabetic agents (non-SGLT2-i users). Methods Patients from the SGLT2-I AMI PROTECT registry (NCT05261867) were stratified according to the use of SGLT2-i before admission for AMI, divided into SGLT2-i users vs. non-SGLT2-i users. In-hospital outcomes included the occurrence of in-hospital new-onset cardiac arrhythmias (NOCAs), defined as a composite of new-onset AF and sustained new-onset ventricular tachycardia (VT) and/or ventricular fibrillation (VF) during hospitalization. Results The study population comprised 646 AMI patients categorized into SGLT2-i users (111 patients) and non-SGLT2-i users (535 patients). SGLT2-i users had a lower rate of NOCAs compared with non-SGLT2-i users (6.3 vs. 15.7%, p = 0.010). Moreover, SGLT2-i was associated with a lower rate of AF and VT/VF considered individually (p = 0.032). In the multivariate logistic regression model, after adjusting for all confounding factors, the use of SGLT2-i was identified as an independent predictor of the lower occurrence of NOCAs (OR = 0.35; 95%CI 0.14-0.86; p = 0.022). At multinomial logistic regression, after adjusting for potential confounders, SGLT2-i therapy remained an independent predictor of VT/VF occurrence (OR = 0.20; 95%CI 0.04-0.97; p = 0.046) but not of AF occurrence. Conclusions In T2DM patients, the use of SGLT2-i was associated with a lower risk of new-onset arrhythmic events during hospitalization for AMI. In particular, the primary effect was expressed in the reduction of VAs. These findings emphasize the cardioprotective effects of SGLT2-i in the setting of AMI beyond glycemic control. Trial registration Data are part of the observational international registry: SGLT2-I AMI PROTECT. ClinicalTrials.gov, identifier: NCT05261867.
Collapse
Affiliation(s)
- Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania ‘Luigi Vanvitelli', Naples, Italy,Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy,*Correspondence: Arturo Cesaro
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania ‘Luigi Vanvitelli', Naples, Italy,Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium,Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Luca Bergamaschi
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| | - Emanuele Gallinoro
- Department of Translational Medical Sciences, University of Campania ‘Luigi Vanvitelli', Naples, Italy,Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Niya Mileva
- Cardiology Clinic, “Alexandrovska” University Hospital, Medical University of Sofia, Sofia, Bulgaria
| | - Alberto Foà
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| | - Matteo Armillotta
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| | - Angelo Sansonetti
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| | - Sara Amicone
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| | - Andrea Impellizzeri
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| | - Giuseppe Esposito
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy,Interventional Cardiology Unit, De Gasperis Cardio Center, Niguarda Hospital, Milan, Italy
| | - Nuccia Morici
- IRCCS S. Maria Nascente - Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Jacopo Andrea Oreglia
- Interventional Cardiology Unit, De Gasperis Cardio Center, Niguarda Hospital, Milan, Italy
| | | | - Ciro Mauro
- Department of Cardiology, Hospital Cardarelli, Naples, Italy
| | | | - Nazzareno Galie
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy,International Translational Research and Medical Education (ITME) Consortium, Naples, Italy,Department of Medicine (Division of Cardiology) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, NY, United States
| | - Carmine Pizzi
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium,Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania ‘Luigi Vanvitelli', Naples, Italy,Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy,Mediterranea Cardiocentro, Naples, Italy
| |
Collapse
|