1
|
Langer N, Stephens AF, Šeman M, McGiffin D, Kaye DM, Gregory SD. HeartMate 3 for Heart Failure with Preserved Ejection Fraction: In Vitro Hemodynamic Evaluation and Anatomical Fitting. Ann Biomed Eng 2024; 52:3208-3218. [PMID: 39014052 PMCID: PMC11560985 DOI: 10.1007/s10439-024-03585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) constitutes approximately 50% of heart failure (HF) cases, and encompasses different phenotypes. Among these, most patients with HFpEF exhibit structural heart changes, often with smaller left ventricular cavities, which pose challenges for utilizing ventricular assist devices (VADs). A left atrial to aortic (LA-Ao) VAD configuration could address these challenges, potentially enhancing patient quality of life by lowering elevated mean left atrial pressure (MLAP). This study assessed the anatomical compatibility and left atrial unloading capacity using a simulated VAD-supported HFpEF patient. A HeartMate3-supported HFpEF patient in an LA-Ao configuration was simulated using a cardiovascular simulator. Hemodynamic parameters were recorded during rest and exercise at seven pump flow rates. Computed tomography scans of 14 HFpEF (NYHA II-III) and six heart failure with reduced ejection fraction patients were analysed for anatomical comparisons. HFpEF models were independently assessed for virtual anatomical fit with the HM3 in the LA-Ao configuration. Baseline MLAP was reduced from 15 to 11 mmHg with the addition of 1 L/min HM3 support in the rest condition. In an exercise simulation, 6 L/min of HM3 support was required to reduce the MLAP from 29 to 16 mmHg. The HM3 successfully accommodated six HFpEF patients without causing interference with other cardiac structures, whereas it caused impingement ranging from 4 to 14 mm in the remaining patients. This study demonstrated that the HM3 in an LA-Ao configuration may be suitable for unloading the left atrium and relieving pulmonary congestion in some HFpEF patients where size-related limitations can be addressed through pre-surgical anatomical fit analysis.
Collapse
Affiliation(s)
- Nina Langer
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia.
- Victorian Heart Institute, Victorian Heart Hospital, Melbourne, VIC, Australia.
- Victorian Heart Hospital, Melbourne, VIC, Australia.
| | - Andrew F Stephens
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia
- Victorian Heart Institute, Victorian Heart Hospital, Melbourne, VIC, Australia
| | - Michael Šeman
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia
- School of Public Health and Preventative Medicine, Monash University, Melbourne, VIC, Australia
- The Department of Cardiology, The Alfred Hospital, Melbourne, VIC, Australia
| | - David McGiffin
- Department of Cardiothoracic Surgery, The Alfred, Melbourne, VIC, Australia
| | - David M Kaye
- The Department of Cardiology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Shaun D Gregory
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia
- Victorian Heart Institute, Victorian Heart Hospital, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Malone AJ, Araz K, Saidi J, Hickey D, Colgan D, Hameed A. Miniature Implantable Left Atrial/Ventricular Pump to Treat Symptoms of Heart Failure With Preserved Ejection Fraction: A Novel Device Treatment. JACC Basic Transl Sci 2024; 9:1385-1387. [PMID: 39822597 PMCID: PMC11733750 DOI: 10.1016/j.jacbts.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Affiliation(s)
- Andrew J. Malone
- Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Pumpinheart Ltd, Galway, Ireland
| | - Kurdo Araz
- Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Jemil Saidi
- Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | | | | | - Aamir Hameed
- Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Pumpinheart Ltd, Galway, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Abbassy M, Ali MZ, Sharma RM, Irani YP, Dahlan A, Azhar M, Aslam N, Hasan B, Hameed A. Biosensors with left ventricular assist devices. Heart Fail Rev 2024; 29:957-967. [PMID: 38940991 PMCID: PMC11306381 DOI: 10.1007/s10741-024-10413-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Heart failure imposes a significant global health burden, standing as a primary contributor to mortality. Various indicators and physiological shifts within the body may hint at distinct cardiac conditions. Specific biosensors have the capability to identify these changes. Integrating or embedding these biosensors into mechanical circulatory support devices (MCSDs), such as left ventricular assist devices (LVADs), becomes crucial for monitoring alterations in biochemical and physiological factors subsequent to an MCSD implantation. Detecting abnormal changes early in the course of disease progression will allow for improved patient outcomes and prognosis following an MCSD implantation. The aim of this review is to explore the available biosensors that may be coupled or implanted alongside LVADs to monitor biomarkers and changes in physiological parameters. Different fabrication materials for the biosensors are discussed, including their advantages and disadvantages. This review also examines the feasibility of integrating feedback control mechanisms into LVAD systems using data from the biosensors. Challenges facing this emerging technology and future directions for research and development are outlined as well. The overarching goal is to provide an overview of how implanted biosensors may improve the performance and outcomes of LVADs through continuous monitoring and closed-loop control.
Collapse
Affiliation(s)
- Mahmoud Abbassy
- School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, Dublin, Ireland
| | - Muhammad Zain Ali
- Internal Medicine, Kent Hospital, Brown University, Warwick, Rhode Island, USA
| | - Riya Manas Sharma
- School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, Dublin, Ireland
| | - Yohan Porus Irani
- School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, Dublin, Ireland
| | - Adil Dahlan
- UCD School of Medicine, University College Dublin, Health Sciences Centre, Dublin 4, Belfield, Dublin, Ireland
| | - Maimoona Azhar
- Graduate Entry Medicine, School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, 123 St. Stephen's Green, Dublin, D02 YN77, Ireland
| | - Nadeem Aslam
- Division of Cardiothoracic Sciences, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Babar Hasan
- Division of Cardiothoracic Sciences, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Aamir Hameed
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland.
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
4
|
Rocchi M, Papangelopoulou K, Ingram M, Bekhuis Y, Claessen G, Claus P, D'hooge J, Donker DW, Meyns B, Fresiello L. A patient-specific echogenic soft robotic left ventricle embedded into a closed-loop cardiovascular simulator for advanced device testing. APL Bioeng 2024; 8:026114. [PMID: 38812756 PMCID: PMC11136518 DOI: 10.1063/5.0203653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Cardiovascular medical devices undergo a large number of pre- and post-market tests before their approval for clinical practice use. Sophisticated cardiovascular simulators can significantly expedite the evaluation process by providing a safe and controlled environment and representing clinically relevant case scenarios. The complex nature of the cardiovascular system affected by severe pathologies and the inherently intricate patient-device interaction creates a need for high-fidelity test benches able to reproduce intra- and inter-patient variability of disease states. Therefore, we propose an innovative cardiovascular simulator that combines in silico and in vitro modeling techniques with a soft robotic left ventricle. The simulator leverages patient-specific and echogenic soft robotic phantoms used to recreate the intracardiac pressure and volume waveforms, combined with an in silico lumped parameter model of the remaining cardiovascular system. Three different patient-specific profiles were recreated, to assess the capability of the simulator to represent a variety of working conditions and mechanical properties of the left ventricle. The simulator is shown to provide a realistic physiological and anatomical representation thanks to the use of soft robotics combined with in silico modeling. This tool proves valuable for optimizing and validating medical devices and delineating specific indications and boundary conditions.
Collapse
Affiliation(s)
- Maria Rocchi
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | - Marcus Ingram
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | | | - Piet Claus
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
5
|
Pasledni R, Kozarski M, Mizerski JK, Darowski M, Okrzeja P, Zieliński K. The hybrid (physical-computational) cardiovascular simulator to study valvular diseases. J Biomech 2024; 170:112173. [PMID: 38805856 DOI: 10.1016/j.jbiomech.2024.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
To better understand the impact of valvular heart disease (VHD) on the hemodynamics of the circulatory system, investigations can be carried out using a model of the cardiovascular system. In this study, a previously developed hybrid (hydro-numerical) simulator of the cardiovascular system (HCS) was adapted and used. In our HCS Björk-Shiley mechanical heart valves were used, playing the role of mitral and aortic ones. In order to simulate aortic stenosis (AS) and mitral regurgitation (MR), special mechanical devices have been developed and integrated with the HCS. The simulation results proved that the system works correctly. Namely, in the case of AS - the mean pulmonary arterial pressure was increased due to increased preload of the left ventricle and the decrease in right ventricular preload was caused by a decrease in systemic arterial pressure. The severity of AS was performed based on the transaortic pressure gradient as well as using the Gorlin and Aaslid equations. In the case of severe AS, when the mean gradient was above 40 mmHg, the aortic valve orifice area was 0.5 cm2, which is in line with ACC/AHA guidelines. For the case of MR - with increasing severity of MR, there was a decrease in the left ventricular pressure and an increase in left atrial pressure. Using mechanical heart valves to simulate VHD by the HCS can be a valuable tool for biomedical research, providing a safe and controlled environment to study and understand the pathophysiology of VHD.
Collapse
Affiliation(s)
- Raman Pasledni
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland.
| | - Maciej Kozarski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Jeremi Kaj Mizerski
- Department of Cardiac Surgery, The Pope John Paul II Province Hospital, Aleje Jana Pawla II 10, 22-400 Zamosc, Poland
| | - Marek Darowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Piotr Okrzeja
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Krzysztof Zieliński
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
6
|
Agrafiotis E, Zimpfer D, Mächler H, Holzapfel GA. Review of Systemic Mock Circulation Loops for Evaluation of Implantable Cardiovascular Devices and Biological Tissues. J Endovasc Ther 2024:15266028241235876. [PMID: 38528650 DOI: 10.1177/15266028241235876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
CLINICAL IMPACT On needs-based ex vivo monitoring of implantable devices or tissues/organs in cardiovascular simulators provides new insights and paves new paths for device prototypes. The insights gained could not only support the needs of patients, but also inform engineers, scientists and clinicians about undiscovered aspects of diseases (during routine monitoring). We analyze seminal and current work and highlight a variety of opportunities for developing preclinical tools that would improve strategies for future implantable devices. Holistically, mock circulation loop studies can bridge the gap between in vivo and in vitro approaches, as well as clinical and laboratory settings, in a mutually beneficial manner.
Collapse
Affiliation(s)
| | - Daniel Zimpfer
- Division of Cardiac Surgery, Medical University of Graz, Graz, Austria
| | - Heinrich Mächler
- Division of Cardiac Surgery, Medical University of Graz, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Meskin M, Starkey PA, Kaspersen AE, Ringgaard S, Sand SG, Nygaard JV, Jensen JA, Traberg MS, Johansen P. Investigating the importance of left atrial compliance on fluid dynamics in a novel mock circulatory loop. Sci Rep 2024; 14:1864. [PMID: 38253772 PMCID: PMC10803730 DOI: 10.1038/s41598-024-52327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
The left atrium (LA) hemodynamic indices hold prognostic value in various cardiac diseases and disorders. To understand the mechanisms of these conditions and to assess the performance of cardiac devices and interventions, in vitro models can be used to replicate the complex physiological interplay between the pulmonary veins, LA, and left ventricle. In this study, a comprehensive and adaptable in vitro model was created. The model includes a flexible LA made from silicone and allows distinct control over the systolic and diastolic functions of both the LA and left ventricle. The LA was mechanically matched with porcine LAs through expansion tests. Fluid dynamic measures were validated against the literature and pulmonary venous flows recorded on five healthy individuals using magnetic resonance flow imaging. Furthermore, the fluid dynamic measures were also used to construct LA pressure-volume loops. The in vitro pressure and flow recordings expressed a high resemblance to physiological waveforms. By decreasing the compliance of the LA, the model behaved realistically, elevating the a- and v-wave peaks of the LA pressure from 12 to 19 mmHg and 22 to 26 mmHg, respectively, while reducing the S/D ratio of the pulmonary venous flowrate from 1.5 to 0.3. This model provides a realistic platform and framework for developing and evaluating left heart procedures and interventions.
Collapse
Affiliation(s)
- Masoud Meskin
- Cardiovascular Biomechanics Group, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Cardiovascular Experimental Laboratory, Department of Electrical and Computer Engineering, Aarhus University, Finlandsgade 22, 8200, Aarhus N, Denmark
| | - Philip Alexander Starkey
- Cardiovascular Experimental Laboratory, Department of Electrical and Computer Engineering, Aarhus University, Finlandsgade 22, 8200, Aarhus N, Denmark
| | | | | | - Signe Gram Sand
- Cardiovascular Experimental Laboratory, Department of Electrical and Computer Engineering, Aarhus University, Finlandsgade 22, 8200, Aarhus N, Denmark
| | - Jens Vinge Nygaard
- Biomechanics and Mechanobiology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marie Sand Traberg
- Cardiovascular Biomechanics Group, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Peter Johansen
- Cardiovascular Experimental Laboratory, Department of Electrical and Computer Engineering, Aarhus University, Finlandsgade 22, 8200, Aarhus N, Denmark.
| |
Collapse
|
8
|
Fisher SM, Murally AR, Rajabally Z, Almas T, Azhar M, Cheema FH, Malone A, Hasan B, Aslam N, Saidi J, O'Neill J, Hameed A. Large animal models to study effectiveness of therapy devices in the treatment of heart failure with preserved ejection fraction (HFpEF). Heart Fail Rev 2024; 29:257-276. [PMID: 37999821 DOI: 10.1007/s10741-023-10371-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Our understanding of the complex pathophysiology of Heart failure with preserved ejection fraction (HFpEF) is limited by the lack of a robust in vivo model. Existing in-vivo models attempt to reproduce the four main phenotypes of HFpEF; ageing, obesity, diabetes mellitus and hypertension. To date, there is no in vivo model that represents all the haemodynamic characteristics of HFpEF, and only a few have proven to be reliable for the preclinical evaluation of potentially new therapeutic targets. HFpEF accounts for 50% of all the heart failure cases and its incidence is on the rise, posing a huge economic burden on the health system. Patients with HFpEF have limited therapeutic options available. The inadequate effectiveness of current pharmaceutical therapeutics for HFpEF has prompted the development of device-based treatments that target the hemodynamic changes to reduce the symptoms of HFpEF. However, despite the potential of device-based solutions to treat HFpEF, most of these therapies are still in the developmental stage and a relevant HFpEF in vivo model will surely expedite their development process. This review article outlines the major limitations of the current large in-vivo models in use while discussing how these designs have helped in the development of therapy devices for the treatment of HFpEF.
Collapse
Affiliation(s)
- Shane Michael Fisher
- Health Sciences Centre, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Anjali Rosanna Murally
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
- School of Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Zahra Rajabally
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
- School of Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Talal Almas
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Maimoona Azhar
- Graduate Entry Medicine, School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, 123 St. Stephen's Green, Dublin, D02 YN77, Ireland
| | - Faisal H Cheema
- Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX, USA
| | - Andrew Malone
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Babar Hasan
- Division of Cardiothoracic Sciences, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Nadeem Aslam
- Division of Cardiothoracic Sciences, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Jemil Saidi
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Jim O'Neill
- Department of Cardiology, Connolly Hospital, Blanchardstown, Dublin, Ireland.
| | - Aamir Hameed
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland.
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
9
|
Giugno L, Formato GM, Chessa M, Votta E, Carminati M, Sturla F. Case report: Personalized transcatheter approach to mid-aortic syndrome by in vitro simulation on a 3-dimensional printed model. Front Cardiovasc Med 2023; 9:1076359. [PMID: 36704466 PMCID: PMC9871590 DOI: 10.3389/fcvm.2022.1076359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
An 8-year-old girl, diagnosed with mid-aortic syndrome (MAS) at the age of 2 months and under antihypertensive therapy, presented with severe systemic hypertension (>200/120 mmHg). Computed tomography (CT) examination revealed aortic aneurysm between severe stenoses at pre- and infra-renal segments, and occlusion of principal splanchnic arteries with peripheral collateral revascularization. Based on CT imaging, preoperative three-dimensional (3D) anatomy was reconstructed to assess aortic dimensions and a dedicated in vitro planning platform was designed to investigate the feasibility of a stenting procedure under fluoroscopic guidance. The in vitro system was designed to incorporate a translucent flexible 3D-printed patient-specific model filled with saline. A covered 8-zig 45-mm-long Cheatham-Platinum (CP) stent and a bare 8-zig, 34-mm-long CP stent were implanted with partial overlap to treat the stenoses (global peak-to-peak pressure gradient > 60 mmHg), excluding the aneurysm and avoiding risk of renal arteries occlusion. Percutaneous procedure was successfully performed with no residual pressure gradient and exactly replicating the strategy tested in vitro. Also, as investigated on the 3D-printed model, additional angioplasty was feasible across the frames of the stent to improve bilateral renal flow. Postoperative systemic pressure significantly reduced (130/70 mmHg) as well as dosage of antihypertensive therapy. This is the first report demonstrating the use of a 3D-printed model to effectively plan percutaneous intervention in a complex pediatric MAS case: taking full advantage of the combined use of a patient-specific 3D model and a dedicated in vitro platform, feasibility of the stenting procedure was successfully tested during pre-procedural assessment. Hence, use of patient-specific 3D-printed models and in vitro dedicated platforms is encouraged to assist pre-procedural planning and personalize treatment, thus enhancing intervention success.
Collapse
Affiliation(s)
- Luca Giugno
- Department of Pediatric and Adult Congenital Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Giovanni Maria Formato
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Massimo Chessa
- Department of Pediatric and Adult Congenital Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy,Facoltà di Medicina e Chirurgia, Vita Salute San Raffaele University, Milan, Italy,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart, Amsterdam, Netherlands
| | - Emiliano Votta
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy,Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Mario Carminati
- Department of Pediatric and Adult Congenital Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Francesco Sturla
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy,Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy,*Correspondence: Francesco Sturla ✉
| |
Collapse
|