1
|
Zheng D, Wu Z, Li L, Cheng S, Chang J. Genetic analysis of the causal relationship between gut microbiota and intervertebral disc degeneration: a two-sample Mendelian randomized study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1986-1998. [PMID: 38093001 DOI: 10.1007/s00586-023-08059-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 06/18/2024]
Abstract
PURPOSE Several recent studies have reported a possible association between gut microbiota and intervertebral disc degeneration; however, no studies have shown a causal relationship between gut microbiota and disc degeneration. This study was dedicated to investigate the causal relationship between the gut microbiota and intervertebral disc degeneration and the presence of potentially bacterial traits using two-sample Mendelian randomization. METHODS A two-sample Mendelian randomization study was performed using the summary statistics of the gut microbiota from the largest available genome-wide association study meta-analysis conducted by the MiBioGen consortium. Summary statistics of intervertebral disc degeneration were obtained from the FinnGen consortium R8 release data. Five basic methods and MR-PRESSO were used to examine causal associations. The results of the study were used to examine the causal association between gut microbiota and intervertebral disc degeneration. Cochran's Q statistics were used to quantify the heterogeneity of instrumental variables. RESULTS By using Mendelian randomization analysis, 10 bacterial traits potentially associated with intervertebral disc degeneration were identified: genus Eubacterium coprostanoligenes group, genus Lachnoclostridium, unknown genus id.2755, genus Marvinbryantia, genus Ruminococcaceae UCG003, family Rhodospirillaceae, unknown genus id.959, order Rhodospirillales, genus Lachnospiraceae NK4A136 grou, genus Eubacterium brachy group. CONCLUSION This Mendelian Randomization study found a causal effect between 10 gut microbiota and intervertebral disc degeneration, and we summarize the possible mechanisms of action in the context of existing studies. However, additional research is essential to fully understand the contribution of genetic factors to the dynamics of gut microbiota and its impact on disc degeneration.
Collapse
Affiliation(s)
- Daqiang Zheng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zhiming Wu
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Lu Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Sichao Cheng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jianjun Chang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
2
|
Wang N, Chen S, Xie Y, Liu X, Xi Z, Li J, Xue C, Deng R, Min W, Kang R, Xie L. The Sanbi Decoction alleviates intervertebral disc degeneration in rats through intestinal flora and serum metabolic homeostasis modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155480. [PMID: 38484462 DOI: 10.1016/j.phymed.2024.155480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is an essential cause of low back pain (LBP), the incidence of which has risen in recent years and is progressively younger, but treatment options are limited, placing a serious economic burden on society. Sanbi decoction (SBD) is an important classical formula for the treatment of IVDD, which can significantly improve patients' symptoms and is a promising alternative therapy. PURPOSE The aim of this study is to investigate the safety and efficacy of SBD in the treatment of IVDD and to explore the underlying mechanisms by using an integrated analytical approach of microbiomics and serum metabolomics, as well as by using molecular biology. METHODS A rat IVDD puncture model was established and treated by gavage with different concentrations of SBD, and clean faeces, serum, liver, kidney, and intervertebral disc (IVD) were collected after 4 weeks. We assessed the safety by liver and kidney weighing, functional tests and tissue staining, the expression of tumor necrosis factor-alpha (TNF-ɑ), interleukin 1β (IL-1β) and interleukin 6 (IL-6) inflammatory factors in serum was detected by ELISA kits, and X-ray test, magnetic resonance imaging (MRI) examination, immunohistochemistry (IHC), western blotting (WB), hematoxylin-eosin (HE) staining and safranin O-fast green (SO/FG) staining were used to assess the efficacy. Finally, we performed 16S rRNA sequencing analysis on the faeces of different groups and untargeted metabolomics on serum and analyzed the association between them. RESULTS SBD can effectively reduce the inflammatory response, regulate the metabolic balance of extracellular matrix (ECM), improve symptoms, and restore IVD function. In addition, SBD can significantly improve the diversity of intestinal flora and maintain the balance. At the phylum level, SBD greatly increased the relative abundance of Patescibacteria and Actinobacteriota and decreased the relative abundance of Bacteroidota. At the genus level, SBD significantly increased the relative abundance of Clostridia_UCG-014, Enterorhabdus, and Adlercreutzia, and decreased the relative abundance of Ruminococcaceae_UCG-005 (p < 0.05). Untargeted metabolomics indicated that SBD significantly improved serum metabolites and altered serum expression of 4alpha-phorbol 12,13-didecanoate (4alphaPDD), euscaphic acid (EA), alpha-muricholic acid (α-MCA), 5-hydroxyindoleacetic acid (5-HIAA), and kynurenine (Kyn) (p < 0.05), and the metabolic pathways were mainly lipid metabolism and amino acid metabolism. CONCLUSIONS This study demonstrated that SBD can extensively regulate intestinal flora and serum metabolic homeostasis to reduce inflammatory response, inhibit the degradation of ECM, restore IVD height and water content to achieve apparent therapeutic effect for IVDD.
Collapse
Affiliation(s)
- Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Shuang Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Yimin Xie
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210029, China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Jingchi Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Congyang Xue
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Wen Min
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210029, China.
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China.
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China.
| |
Collapse
|
3
|
Heggli I, Teixeira GQ, Iatridis JC, Neidlinger‐Wilke C, Dudli S. The role of the complement system in disc degeneration and Modic changes. JOR Spine 2024; 7:e1312. [PMID: 38312949 PMCID: PMC10835744 DOI: 10.1002/jsp2.1312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
Disc degeneration and vertebral endplate bone marrow lesions called Modic changes are prevalent spinal pathologies found in chronic low back pain patients. Their pathomechanisms are complex and not fully understood. Recent studies have revealed that complement system proteins and interactors are dysregulated in disc degeneration and Modic changes. The complement system is part of the innate immune system and plays a critical role in tissue homeostasis. However, its dysregulation has also been associated with various pathological conditions such as rheumatoid arthritis and osteoarthritis. Here, we review the evidence for the involvement of the complement system in intervertebral disc degeneration and Modic changes. We found that only a handful of studies reported on complement factors in Modic changes and disc degeneration. Therefore, the level of evidence for the involvement of the complement system is currently low. Nevertheless, the complement system is tightly intertwined with processes known to occur during disc degeneration and Modic changes, such as increased cell death, autoantibody production, bacterial defense processes, neutrophil activation, and osteoclast formation, indicating a contribution of the complement system to these spinal pathologies. Based on these mechanisms, we propose a model how the complement system could contribute to the vicious cycle of tissue damage and chronic inflammation in disc degeneration and Modic changes. With this review, we aim to highlight a currently understudied but potentially important inflammatory pathomechanism of disc degeneration and Modic changes that may be a novel therapeutic target.
Collapse
Affiliation(s)
- Irina Heggli
- Center of Experimental Rheumatology, Department of RheumatologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Department of Physical Medicine and RheumatologyBalgrist University Hospital, Balgrist Campus, University of ZurichZurichSwitzerland
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Graciosa Q. Teixeira
- Institute of Orthopedic Research and Biomechanics, Trauma Research Centre, Ulm UniversityUlmGermany
| | - James C. Iatridis
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Stefan Dudli
- Center of Experimental Rheumatology, Department of RheumatologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Department of Physical Medicine and RheumatologyBalgrist University Hospital, Balgrist Campus, University of ZurichZurichSwitzerland
| |
Collapse
|
4
|
Hui J, Chen Y, Li C, Gou Y, Liu Y, Zhou R, Kang M, Liu C, Wang B, Shi P, Cheng S, Yang X, Pan C, Jia Y, Cheng B, Liu H, Wen Y, Zhang F. Insight into the Causal Relationship between Gut Microbiota and Back Pain: A Two Sample Bidirectional Mendelian Randomization Study. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2300192. [PMID: 38099244 PMCID: PMC10716053 DOI: 10.1002/ggn2.202300192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/19/2023] [Indexed: 12/17/2023]
Abstract
Observational studies have shown that alterations in gut microbiota composition are associated with low back pain. However, it remains unclear whether the association is causal. To reveal the causal association between gut microbiota and low back pain, a two-sample bidirectional Mendelian randomization (MR) analysis is performed. The inverse variance weighted regression (IVW) is performed as the principal MR analysis. MR-Egger and Weighted Median is further conducted as complementary analysis to validate the robustness of the results. Finally, a reverse MR analysis is performed to evaluate the possibility of reverse causation. The inverse variance weighted (IVW) method suggests that Peptostreptococcaceae (odds ratio [OR] 1.056, 95% confidence interval [CI] [1.015-1.098], P IVW = 0.010), and Lactobacillaceae (OR 1.070, 95% CI [1.026-1.115], P IVW = 0.003) are positively associated with back pain. The Ruminococcaceae (OR 0.923, 95% CI [0.849-0.997], P IVW = 0.033), Butyricicoccus (OR 0.920, 95% CI [0.868 - 0.972], P IVW = 0.002), and Lachnospiraceae (OR 0.948, 95% CI [0.903-0.994], P IVW = 0.022) are negatively associated with back pain. In this study, underlying causal relationships are identified among gut microbiota and low back pain. Notably, further research is needed on the biological mechanisms by which gut microbiota influences low back pain.
Collapse
Affiliation(s)
- Jingni Hui
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| | - Yifan Gou
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| | - Ye Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| | - Ruixue Zhou
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| | - Meijuan Kang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| | - Chen Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| | - Bingyi Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| | - Panxing Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning CommissionSchool of Public HealthHealth Science CenterXi'an Jiaotong UniversityXi'an71006P. R. China
| |
Collapse
|
5
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
6
|
Velnar T, Gradisnik L. Endplate role in the degenerative disc disease: A brief review. World J Clin Cases 2023; 11:17-29. [PMID: 36687189 PMCID: PMC9846967 DOI: 10.12998/wjcc.v11.i1.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/19/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The degenerative disease of the intervertebral disc is nowadays an important health problem, which has still not been understood and solved adequately. The vertebral endplate is regarded as one of the vital elements in the structure of the intervertebral disc. Its constituent cells, the chondrocytes in the endplate, may also be involved in the process of the intervertebral disc degeneration and their role is central both under physiological and pathological conditions. They main functions include a role in homeostasis of the extracellular environment of the intervertebral disc, metabolic support and nutrition of the discal nucleus and annulus beneath and the preservation of the extracellular matrix. Therefore, it is understandable that the cells in the endplate have been in the centre of research from several viewpoints, such as development, degeneration and growth, reparation and remodelling, as well as treatment strategies. In this article, we briefly review the importance of vertebral endplate, which are often overlooked, in the intervertebral disc degeneration.
Collapse
Affiliation(s)
- Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- Alma Mater Europaea Maribor, Maribor 2000, Slovenia
| | - Lidija Gradisnik
- Alma Mater Europaea Maribor, Maribor 2000, Slovenia
- Institute of Biomedical Sciences, University of Maribor, University of Maribor, Maribor 2000, Slovenia
| |
Collapse
|