1
|
Hong L, Feng T, Qiu R, Lin S, Xue Y, Huang K, Chen C, Wang J, Xie R, Song S, Zhang C, Zou J. A novel interpretative tool for early prediction of low cardiac output syndrome after valve surgery: online machine learning models. Ann Med 2023; 55:2293244. [PMID: 38128272 PMCID: PMC10763875 DOI: 10.1080/07853890.2023.2293244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVE Low cardiac output syndrome (LCOS) is a severe complication after valve surgery, with no uniform standard for early identification. We developed interpretative machine learning (ML) models for predicting LCOS risk preoperatively and 0.5 h postoperatively for intervention in advance. METHODS A total of 2218 patients undergoing valve surgery from June 2019 to Dec 2021 were finally enrolled to construct preoperative and postoperative models. Logistic regression, support vector machine (SVM), random forest classifier, extreme gradient boosting, and deep neural network were executed for model construction, and the performance of models was evaluated by area under the curve (AUC) of the receiver operating characteristic and calibration curves. Our models were interpreted through SHapley Additive exPlanations, and presented as an online tool to improve clinical operability. RESULTS The SVM algorithm was chosen for modeling due to better AUC and calibration capability. The AUCs of the preoperative and postoperative models were 0.786 (95% CI 0.729-0.843) and 0.863 (95% CI 0.824-0.902), and the Brier scores were 0.123 and 0.107. Our models have higher timeliness and interpretability, and wider coverage than the vasoactive-inotropic score, and the AUC of the postoperative model was significantly higher. Our preoperative and postoperative models are available online at http://njfh-yxb.com.cn:2022/lcos. CONCLUSIONS The first interpretable ML tool with two prediction periods for online early prediction of LCOS risk after valve surgery was successfully built in this study, in which the SVM model has the best performance, reserving enough time for early precise intervention in critical care.
Collapse
Affiliation(s)
- Liang Hong
- Cardiovascular Intensive Care Unit, Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tianling Feng
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Runze Qiu
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Shiteng Lin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yinying Xue
- Cardiovascular Intensive Care Unit, Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kaizong Huang
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Chen Chen
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Jiawen Wang
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongrong Xie
- Cardiovascular Intensive Care Unit, Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Sanbing Song
- Cardiovascular Intensive Care Unit, Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Cui Zhang
- Cardiovascular Intensive Care Unit, Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| |
Collapse
|