1
|
Grzybowski A, Jin K, Zhou J, Pan X, Wang M, Ye J, Wong TY. Retina Fundus Photograph-Based Artificial Intelligence Algorithms in Medicine: A Systematic Review. Ophthalmol Ther 2024; 13:2125-2149. [PMID: 38913289 PMCID: PMC11246322 DOI: 10.1007/s40123-024-00981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/15/2024] [Indexed: 06/25/2024] Open
Abstract
We conducted a systematic review of research in artificial intelligence (AI) for retinal fundus photographic images. We highlighted the use of various AI algorithms, including deep learning (DL) models, for application in ophthalmic and non-ophthalmic (i.e., systemic) disorders. We found that the use of AI algorithms for the interpretation of retinal images, compared to clinical data and physician experts, represents an innovative solution with demonstrated superior accuracy in identifying many ophthalmic (e.g., diabetic retinopathy (DR), age-related macular degeneration (AMD), optic nerve disorders), and non-ophthalmic disorders (e.g., dementia, cardiovascular disease). There has been a significant amount of clinical and imaging data for this research, leading to the potential incorporation of AI and DL for automated analysis. AI has the potential to transform healthcare by improving accuracy, speed, and workflow, lowering cost, increasing access, reducing mistakes, and transforming healthcare worker education and training.
Collapse
Affiliation(s)
- Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznań , Poland.
| | - Kai Jin
- Eye Center, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingxin Zhou
- Eye Center, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangji Pan
- Eye Center, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meizhu Wang
- Eye Center, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Juan Ye
- Eye Center, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Tien Y Wong
- School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Beijing, China
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| |
Collapse
|
2
|
Montolío A, Cegoñino J, Garcia-Martin E, Pérez Del Palomar A. The macular retinal ganglion cell layer as a biomarker for diagnosis and prognosis in multiple sclerosis: A deep learning approach. Acta Ophthalmol 2024; 102:e272-e284. [PMID: 37300357 DOI: 10.1111/aos.15722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE The macular ganglion cell layer (mGCL) is a strong potential biomarker of axonal degeneration in multiple sclerosis (MS). For this reason, this study aims to develop a computer-aided method to facilitate diagnosis and prognosis in MS. METHODS This paper combines a cross-sectional study of 72 MS patients and 30 healthy control subjects for diagnosis and a 10-year longitudinal study of the same MS patients for the prediction of disability progression, during which the mGCL was measured using optical coherence tomography (OCT). Deep neural networks were used as an automatic classifier. RESULTS For MS diagnosis, greatest accuracy (90.3%) was achieved using 17 features as inputs. The neural network architecture comprised the input layer, two hidden layers and the output layer with softmax activation. For the prediction of disability progression 8 years later, accuracy of 81.9% was achieved with a neural network comprising two hidden layers and 400 epochs. CONCLUSION We present evidence that by applying deep learning techniques to clinical and mGCL thickness data it is possible to identify MS and predict the course of the disease. This approach potentially constitutes a non-invasive, low-cost, easy-to-implement and effective method.
Collapse
Affiliation(s)
- Alberto Montolío
- Biomaterials Group, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, University of Zaragoza, Zaragoza, Spain
| | - José Cegoñino
- Biomaterials Group, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, University of Zaragoza, Zaragoza, Spain
| | - Elena Garcia-Martin
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- GIMSO Research and Innovation Group, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Amaya Pérez Del Palomar
- Biomaterials Group, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
3
|
Gong AJ, Fu W, Li H, Guo N, Pan T. A Siamese ResNeXt network for predicting carotid intimal thickness of patients with T2DM from fundus images. Front Endocrinol (Lausanne) 2024; 15:1364519. [PMID: 38549767 PMCID: PMC10973133 DOI: 10.3389/fendo.2024.1364519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/21/2024] [Indexed: 04/02/2024] Open
Abstract
Objective To develop and validate an artificial intelligence diagnostic model based on fundus images for predicting Carotid Intima-Media Thickness (CIMT) in individuals with Type 2 Diabetes Mellitus (T2DM). Methods In total, 1236 patients with T2DM who had both retinal fundus images and CIMT ultrasound records within a single hospital stay were enrolled. Data were divided into normal and thickened groups and sent to eight deep learning models: convolutional neural networks of the eight models were all based on ResNet or ResNeXt. Their encoder and decoder modes are different, including the standard mode, the Parallel learning mode, and the Siamese mode. Except for the six unimodal networks, two multimodal networks based on ResNeXt under the Parallel learning mode or the Siamese mode were embedded with ages. Performance of eight models were compared via the confusion matrix, precision, recall, specificity, F1 value, and ROC curve, and recall was regarded as the main indicator. Besides, Grad-CAM was used to visualize the decisions made by Siamese ResNeXt network, which is the best performance. Results Performance of various models demonstrated the following points: 1) the RexNeXt showed a notable improvement over the ResNet; 2) the structural Siamese networks, which extracted features parallelly and independently, exhibited slight performance enhancements compared to the traditional networks. Notably, the Siamese networks resulted in significant improvements; 3) the performance of classification declined if the age factor was embedded in the network. Taken together, the Siamese ResNeXt unimodal model performed best for its superior efficacy and robustness. This model achieved a recall rate of 88.0% and an AUC value of 90.88% in the validation subset. Additionally, heatmaps calculated by the Grad-CAM algorithm presented concentrated and orderly mappings around the optic disc vascular area in normal CIMT groups and dispersed, irregular patterns in thickened CIMT groups. Conclusion We provided a Siamese ResNeXt neural network for predicting the carotid intimal thickness of patients with T2DM from fundus images and confirmed the correlation between fundus microvascular lesions and CIMT.
Collapse
Affiliation(s)
- AJuan Gong
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wanjin Fu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Heng Li
- The Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Na Guo
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
| | - Tianrong Pan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Tan Y, Ma Y, Rao S, Sun X. Performance of deep learning for detection of chronic kidney disease from retinal fundus photographs: A systematic review and meta-analysis. Eur J Ophthalmol 2024; 34:502-509. [PMID: 37671422 DOI: 10.1177/11206721231199848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
OBJECTIVE Deep learning has been used to detect chronic kidney disease (CKD) from retinal fundus photographs. We aim to evaluate the performance of deep learning for CKD detection. METHODS The original studies in CKD patients detected by deep learning from retinal fundus photographs were eligible for inclusion. PubMed, Embase, the Cochrane Library, and Web of Science were searched up to October 31, 2022. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was used to assess the risk of bias. RESULTS Four studies enrolled 114,860 subjects were included. The pooled sensitivity and specificity were 87.8% (95% confidence interval (CI): 61.6% to 98.3%), and 62.4% (95% CI: 44.9% to 78.7%). The area under the curve (AUC) was 0.864 (95%CI: 0.769, 0.986). CONCLUSION Deep learning based on retinal fundus photographs has the ability to detect CKD, but it currently has a lot of room for improvement. It is still a long way from clinical application.
Collapse
Affiliation(s)
- Yuhe Tan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunxi Ma
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Suyun Rao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Vilela MAP, Arrigo A, Parodi MB, da Silva Mengue C. Smartphone Eye Examination: Artificial Intelligence and Telemedicine. Telemed J E Health 2024; 30:341-353. [PMID: 37585566 DOI: 10.1089/tmj.2023.0041] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Background: The current medical scenario is closely linked to recent progress in telecommunications, photodocumentation, and artificial intelligence (AI). Smartphone eye examination may represent a promising tool in the technological spectrum, with special interest for primary health care services. Obtaining fundus imaging with this technique has improved and democratized the teaching of fundoscopy, but in particular, it contributes greatly to screening diseases with high rates of blindness. Eye examination using smartphones essentially represents a cheap and safe method, thus contributing to public policies on population screening. This review aims to provide an update on the use of this resource and its future prospects, especially as a screening and ophthalmic diagnostic tool. Methods: In this review, we surveyed major published advances in retinal and anterior segment analysis using AI. We performed an electronic search on the Medical Literature Analysis and Retrieval System Online (MEDLINE), EMBASE, and Cochrane Library for published literature without a deadline. We included studies that compared the diagnostic accuracy of smartphone ophthalmoscopy for detecting prevalent diseases with an accurate or commonly employed reference standard. Results: There are few databases with complete metadata, providing demographic data, and few databases with sufficient images involving current or new therapies. It should be taken into consideration that these are databases containing images captured using different systems and formats, with information often being excluded without essential detailing of the reasons for exclusion, which further distances them from real-life conditions. The safety, portability, low cost, and reproducibility of smartphone eye images are discussed in several studies, with encouraging results. Conclusions: The high level of agreement between conventional and a smartphone method shows a powerful arsenal for screening and early diagnosis of the main causes of blindness, such as cataract, glaucoma, diabetic retinopathy, and age-related macular degeneration. In addition to streamlining the medical workflow and bringing benefits for public health policies, smartphone eye examination can make safe and quality assessment available to the population.
Collapse
Affiliation(s)
| | - Alessandro Arrigo
- Department of Ophthalmology, Scientific Institute San Raffaele, Milan, Italy
- University Vita-Salute, Milan, Italy
| | - Maurizio Battaglia Parodi
- Department of Ophthalmology, Scientific Institute San Raffaele, Milan, Italy
- University Vita-Salute, Milan, Italy
| | - Carolina da Silva Mengue
- Post-Graduation Ophthalmological School, Ivo Corrêa-Meyer/Cardiology Institute, Porto Alegre, Brazil
| |
Collapse
|
6
|
Heger KA, Waldstein SM. Artificial intelligence in retinal imaging: current status and future prospects. Expert Rev Med Devices 2024; 21:73-89. [PMID: 38088362 DOI: 10.1080/17434440.2023.2294364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION The steadily growing and aging world population, in conjunction with continuously increasing prevalences of vision-threatening retinal diseases, is placing an increasing burden on the global healthcare system. The main challenges within retinology involve identifying the comparatively few patients requiring therapy within the large mass, the assurance of comprehensive screening for retinal disease and individualized therapy planning. In order to sustain high-quality ophthalmic care in the future, the incorporation of artificial intelligence (AI) technologies into our clinical practice represents a potential solution. AREAS COVERED This review sheds light onto already realized and promising future applications of AI techniques in retinal imaging. The main attention is directed at the application in diabetic retinopathy and age-related macular degeneration. The principles of use in disease screening, grading, therapeutic planning and prediction of future developments are explained based on the currently available literature. EXPERT OPINION The recent accomplishments of AI in retinal imaging indicate that its implementation into our daily practice is likely to fundamentally change the ophthalmic healthcare system and bring us one step closer to the goal of individualized treatment. However, it must be emphasized that the aim is to optimally support clinicians by gradually incorporating AI approaches, rather than replacing ophthalmologists.
Collapse
Affiliation(s)
- Katharina A Heger
- Department of Ophthalmology, Landesklinikum Mistelbach-Gaenserndorf, Mistelbach, Austria
| | - Sebastian M Waldstein
- Department of Ophthalmology, Landesklinikum Mistelbach-Gaenserndorf, Mistelbach, Austria
| |
Collapse
|
7
|
Danielescu C, Dabija MG, Nedelcu AH, Lupu VV, Lupu A, Ioniuc I, Gîlcă-Blanariu GE, Donica VC, Anton ML, Musat O. Automated Retinal Vessel Analysis Based on Fundus Photographs as a Predictor for Non-Ophthalmic Diseases-Evolution and Perspectives. J Pers Med 2023; 14:45. [PMID: 38248746 PMCID: PMC10817503 DOI: 10.3390/jpm14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
The study of retinal vessels in relation to cardiovascular risk has a long history. The advent of a dedicated tool based on digital imaging, i.e., the retinal vessel analyzer, and also other software such as Integrative Vessel Analysis (IVAN), Singapore I Vessel Assessment (SIVA), and Vascular Assessment and Measurement Platform for Images of the Retina (VAMPIRE), has led to the accumulation of a formidable body of evidence regarding the prognostic value of retinal vessel analysis (RVA) for cardiovascular and cerebrovascular disease (including arterial hypertension in children). There is also the potential to monitor the response of retinal vessels to therapies such as physical activity or bariatric surgery. The dynamic vessel analyzer (DVA) remains a unique way of studying neurovascular coupling, helping to understand the pathogenesis of cerebrovascular and neurodegenerative conditions and also being complementary to techniques that measure macrovascular dysfunction. Beyond cardiovascular disease, retinal vessel analysis has shown associations with and prognostic value for neurological conditions, inflammation, kidney function, and respiratory disease. Artificial intelligence (AI) (represented by algorithms such as QUantitative Analysis of Retinal vessel Topology and siZe (QUARTZ), SIVA-DLS (SIVA-deep learning system), and many others) seems efficient in extracting information from fundus photographs, providing prognoses of various general conditions with unprecedented predictive value. The future challenges will be integrating RVA and other qualitative and quantitative risk factors in a unique, comprehensive prediction tool, certainly powered by AI, while building the much-needed acceptance for such an approach inside the medical community and reducing the "black box" effect, possibly by means of saliency maps.
Collapse
Affiliation(s)
- Ciprian Danielescu
- Department of Ophthalmology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Marius Gabriel Dabija
- Department of Surgery II, Discipline of Neurosurgery, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Alin Horatiu Nedelcu
- Department of Morpho-Functional Sciences I, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Vasile Valeriu Lupu
- Department of Pediatrics, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (V.V.L.); (I.I.)
| | - Ancuta Lupu
- Department of Pediatrics, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (V.V.L.); (I.I.)
| | - Ileana Ioniuc
- Department of Pediatrics, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (V.V.L.); (I.I.)
| | | | - Vlad-Constantin Donica
- Doctoral School, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (V.-C.D.); (M.-L.A.)
| | - Maria-Luciana Anton
- Doctoral School, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (V.-C.D.); (M.-L.A.)
| | - Ovidiu Musat
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucuresti, Romania;
| |
Collapse
|
8
|
Tan TF, Thirunavukarasu AJ, Jin L, Lim J, Poh S, Teo ZL, Ang M, Chan RVP, Ong J, Turner A, Karlström J, Wong TY, Stern J, Ting DSW. Artificial intelligence and digital health in global eye health: opportunities and challenges. Lancet Glob Health 2023; 11:e1432-e1443. [PMID: 37591589 DOI: 10.1016/s2214-109x(23)00323-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023]
Abstract
Global eye health is defined as the degree to which vision, ocular health, and function are maximised worldwide, thereby optimising overall wellbeing and quality of life. Improving eye health is a global priority as a key to unlocking human potential by reducing the morbidity burden of disease, increasing productivity, and supporting access to education. Although extraordinary progress fuelled by global eye health initiatives has been made over the last decade, there remain substantial challenges impeding further progress. The accelerated development of digital health and artificial intelligence (AI) applications provides an opportunity to transform eye health, from facilitating and increasing access to eye care to supporting clinical decision making with an objective, data-driven approach. Here, we explore the opportunities and challenges presented by digital health and AI in global eye health and describe how these technologies could be leveraged to improve global eye health. AI, telehealth, and emerging technologies have great potential, but require specific work to overcome barriers to implementation. We suggest that a global digital eye health task force could facilitate coordination of funding, infrastructural development, and democratisation of AI and digital health to drive progress forwards in this domain.
Collapse
Affiliation(s)
- Ting Fang Tan
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore General Hospital, Singapore
| | - Arun J Thirunavukarasu
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore; Corpus Christi College, University of Cambridge, Cambridge, UK; School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Liyuan Jin
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore
| | - Joshua Lim
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore General Hospital, Singapore
| | - Stanley Poh
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore General Hospital, Singapore
| | - Zhen Ling Teo
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore General Hospital, Singapore
| | - Marcus Ang
- Singapore National Eye Centre, Singapore General Hospital, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore
| | - R V Paul Chan
- Illinois Eye and Ear Infirmary, University of Illinois College of Medicine, Urbana-Champaign, IL, USA
| | - Jasmine Ong
- Pharmacy Department, Singapore General Hospital, Singapore
| | - Angus Turner
- Lions Eye Institute, University of Western Australia, Nedlands, WA, Australia
| | - Jonas Karlström
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Tien Yin Wong
- Singapore National Eye Centre, Singapore General Hospital, Singapore; Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Jude Stern
- The International Agency for the Prevention of Blindness, London, UK
| | - Daniel Shu-Wei Ting
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore General Hospital, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore.
| |
Collapse
|
9
|
Yi JK, Rim TH, Park S, Kim SS, Kim HC, Lee CJ, Kim H, Lee G, Lim JSG, Tan YY, Yu M, Tham YC, Bakhai A, Shantsila E, Leeson P, Lip GYH, Chin CWL, Cheng CY. Cardiovascular disease risk assessment using a deep-learning-based retinal biomarker: a comparison with existing risk scores. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2023; 4:236-244. [PMID: 37265875 PMCID: PMC10232236 DOI: 10.1093/ehjdh/ztad023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/25/2023] [Accepted: 03/24/2023] [Indexed: 06/03/2023]
Abstract
Aims This study aims to evaluate the ability of a deep-learning-based cardiovascular disease (CVD) retinal biomarker, Reti-CVD, to identify individuals with intermediate- and high-risk for CVD. Methods and results We defined the intermediate- and high-risk groups according to Pooled Cohort Equation (PCE), QRISK3, and modified Framingham Risk Score (FRS). Reti-CVD's prediction was compared to the number of individuals identified as intermediate- and high-risk according to standard CVD risk assessment tools, and sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated to assess the results. In the UK Biobank, among 48 260 participants, 20 643 (42.8%) and 7192 (14.9%) were classified into the intermediate- and high-risk groups according to PCE, and QRISK3, respectively. In the Singapore Epidemiology of Eye Diseases study, among 6810 participants, 3799 (55.8%) were classified as intermediate- and high-risk group according to modified FRS. Reti-CVD identified PCE-based intermediate- and high-risk groups with a sensitivity, specificity, PPV, and NPV of 82.7%, 87.6%, 86.5%, and 84.0%, respectively. Reti-CVD identified QRISK3-based intermediate- and high-risk groups with a sensitivity, specificity, PPV, and NPV of 82.6%, 85.5%, 49.9%, and 96.6%, respectively. Reti-CVD identified intermediate- and high-risk groups according to the modified FRS with a sensitivity, specificity, PPV, and NPV of 82.1%, 80.6%, 76.4%, and 85.5%, respectively. Conclusion The retinal photograph biomarker (Reti-CVD) was able to identify individuals with intermediate and high-risk for CVD, in accordance with existing risk assessment tools.
Collapse
Affiliation(s)
- Joseph Keunhong Yi
- Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Tyler Hyungtaek Rim
- Singapore Eye Research Institute, Singapore National Eye Centre, The Academia, 20 College Rd, Level 6 Discovery Tower, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
- Mediwhale Inc., 43, Digital-ro 34- gil, Guro-gu, Seoul 08378, Republic of Korea
| | - Sungha Park
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sung Soo Kim
- Division of Retina, Severance Eye Hospital, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyeon Chang Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Chan Joo Lee
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyeonmin Kim
- Mediwhale Inc., 43, Digital-ro 34- gil, Guro-gu, Seoul 08378, Republic of Korea
| | - Geunyoung Lee
- Mediwhale Inc., 43, Digital-ro 34- gil, Guro-gu, Seoul 08378, Republic of Korea
| | - James Soo Ghim Lim
- Mediwhale Inc., 43, Digital-ro 34- gil, Guro-gu, Seoul 08378, Republic of Korea
| | - Yong Yu Tan
- School of Medicine, University College Cork, College Road, Cork T12 K8AF, Ireland
| | - Marco Yu
- Singapore Eye Research Institute, Singapore National Eye Centre, The Academia, 20 College Rd, Level 6 Discovery Tower, Singapore 169856, Singapore
| | - Yih-Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, The Academia, 20 College Rd, Level 6 Discovery Tower, Singapore 169856, Singapore
- Centre for Innovation and Precision Eye Health; and Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore
| | - Ameet Bakhai
- Department of Cardiology, Royal Free Hospital London NHS Foundation Trust, Barnet General Hospital, Pond St, London NW3 2QG, UK
- Amore Health Ltd, London, UK
| | - Eduard Shantsila
- Department of Primary Care and Mental Health, University of Liverpool, Liverpool L69 3BX, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L69 3BX, UK
| | - Paul Leeson
- Cardiovascular Clinical Research Facility, RDM Division of Cardiovascular Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L69 3BX, UK
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Calvin W L Chin
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Dr, Singapore 169609, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, The Academia, 20 College Rd, Level 6 Discovery Tower, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
- Centre for Innovation and Precision Eye Health; and Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore
| |
Collapse
|
10
|
Ji Y, Ji Y, Liu Y, Zhao Y, Zhang L. Research progress on diagnosing retinal vascular diseases based on artificial intelligence and fundus images. Front Cell Dev Biol 2023; 11:1168327. [PMID: 37056999 PMCID: PMC10086262 DOI: 10.3389/fcell.2023.1168327] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
As the only blood vessels that can directly be seen in the whole body, pathological changes in retinal vessels are related to the metabolic state of the whole body and many systems, which seriously affect the vision and quality of life of patients. Timely diagnosis and treatment are key to improving vision prognosis. In recent years, with the rapid development of artificial intelligence, the application of artificial intelligence in ophthalmology has become increasingly extensive and in-depth, especially in the field of retinal vascular diseases. Research study results based on artificial intelligence and fundus images are remarkable and provides a great possibility for early diagnosis and treatment. This paper reviews the recent research progress on artificial intelligence in retinal vascular diseases (including diabetic retinopathy, hypertensive retinopathy, retinal vein occlusion, retinopathy of prematurity, and age-related macular degeneration). The limitations and challenges of the research process are also discussed.
Collapse
Affiliation(s)
- Yuke Ji
- The Laboratory of Artificial Intelligence and Bigdata in Ophthalmology, Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Ji
- Affiliated Hospital of Shandong University of traditional Chinese Medicine, Jinan, Shandong, China
| | - Yunfang Liu
- Department of Ophthalmology, The First People’s Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Ying Zhao
- Affiliated Hospital of Shandong University of traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Liya Zhang, ; Ying Zhao,
| | - Liya Zhang
- Department of Ophthalmology, The First People’s Hospital of Huzhou, Huzhou, Zhejiang, China
- *Correspondence: Liya Zhang, ; Ying Zhao,
| |
Collapse
|
11
|
Ghadiri N, Nair J, Moots RJ. The challenge of ocular inflammation in systemic vasculitis: How to address inequalities of care? RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:1-3. [PMID: 37138648 PMCID: PMC10150873 DOI: 10.2478/rir-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 05/05/2023]
Affiliation(s)
- Nima Ghadiri
- Department of Ophthalmology, Liverpool University Hospitals NHS Trust, LiverpoolL9 7AL, UK
- National Centre for Behçet's Syndrome, Clinical Sciences Centre, Aintree University Hospital, LiverpoolL9 7AL, UK
| | - Jagdish Nair
- National Centre for Behçet's Syndrome, Clinical Sciences Centre, Aintree University Hospital, LiverpoolL9 7AL, UK
- Department of Rheumatology, Liverpool University Hospitals NHS Trust, LiverpoolL9 7AL, UK
| | - Robert J Moots
- National Centre for Behçet's Syndrome, Clinical Sciences Centre, Aintree University Hospital, LiverpoolL9 7AL, UK
- Department of Rheumatology, Liverpool University Hospitals NHS Trust, LiverpoolL9 7AL, UK
- Faculty of Heath, Social Care and Medicine, Edge Hill University, Ormskirk, LancashireL39 4QP, UK
| |
Collapse
|
12
|
Wang S, Ji Y, Bai W, Ji Y, Li J, Yao Y, Zhang Z, Jiang Q, Li K. Advances in artificial intelligence models and algorithms in the field of optometry. Front Cell Dev Biol 2023; 11:1170068. [PMID: 37187617 PMCID: PMC10175695 DOI: 10.3389/fcell.2023.1170068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The rapid development of computer science over the past few decades has led to unprecedented progress in the field of artificial intelligence (AI). Its wide application in ophthalmology, especially image processing and data analysis, is particularly extensive and its performance excellent. In recent years, AI has been increasingly applied in optometry with remarkable results. This review is a summary of the application progress of different AI models and algorithms used in optometry (for problems such as myopia, strabismus, amblyopia, keratoconus, and intraocular lens) and includes a discussion of the limitations and challenges associated with its application in this field.
Collapse
Affiliation(s)
- Suyu Wang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yuke Ji
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Wen Bai
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yun Ji
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiajun Li
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yujia Yao
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ziran Zhang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Qin Jiang, ; Keran Li,
| | - Keran Li
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Qin Jiang, ; Keran Li,
| |
Collapse
|
13
|
Khan NC, Perera C, Dow ER, Chen KM, Mahajan VB, Mruthyunjaya P, Do DV, Leng T, Myung D. Predicting Systemic Health Features from Retinal Fundus Images Using Transfer-Learning-Based Artificial Intelligence Models. Diagnostics (Basel) 2022; 12:diagnostics12071714. [PMID: 35885619 PMCID: PMC9322827 DOI: 10.3390/diagnostics12071714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
While color fundus photos are used in routine clinical practice to diagnose ophthalmic conditions, evidence suggests that ocular imaging contains valuable information regarding the systemic health features of patients. These features can be identified through computer vision techniques including deep learning (DL) artificial intelligence (AI) models. We aim to construct a DL model that can predict systemic features from fundus images and to determine the optimal method of model construction for this task. Data were collected from a cohort of patients undergoing diabetic retinopathy screening between March 2020 and March 2021. Two models were created for each of 12 systemic health features based on the DenseNet201 architecture: one utilizing transfer learning with images from ImageNet and another from 35,126 fundus images. Here, 1277 fundus images were used to train the AI models. Area under the receiver operating characteristics curve (AUROC) scores were used to compare the model performance. Models utilizing the ImageNet transfer learning data were superior to those using retinal images for transfer learning (mean AUROC 0.78 vs. 0.65, p-value < 0.001). Models using ImageNet pretraining were able to predict systemic features including ethnicity (AUROC 0.93), age > 70 (AUROC 0.90), gender (AUROC 0.85), ACE inhibitor (AUROC 0.82), and ARB medication use (AUROC 0.78). We conclude that fundus images contain valuable information about the systemic characteristics of a patient. To optimize DL model performance, we recommend that even domain specific models consider using transfer learning from more generalized image sets to improve accuracy.
Collapse
Affiliation(s)
- Nergis C. Khan
- Byers Eye Institute at Stanford, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (N.C.K.); (C.P.); (E.R.D.); (K.M.C.); (V.B.M.); (P.M.); (D.V.D.); (T.L.)
| | - Chandrashan Perera
- Byers Eye Institute at Stanford, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (N.C.K.); (C.P.); (E.R.D.); (K.M.C.); (V.B.M.); (P.M.); (D.V.D.); (T.L.)
- Department of Ophthalmology, Fremantle Hospital, Perth, WA 6004, Australia
| | - Eliot R. Dow
- Byers Eye Institute at Stanford, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (N.C.K.); (C.P.); (E.R.D.); (K.M.C.); (V.B.M.); (P.M.); (D.V.D.); (T.L.)
| | - Karen M. Chen
- Byers Eye Institute at Stanford, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (N.C.K.); (C.P.); (E.R.D.); (K.M.C.); (V.B.M.); (P.M.); (D.V.D.); (T.L.)
| | - Vinit B. Mahajan
- Byers Eye Institute at Stanford, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (N.C.K.); (C.P.); (E.R.D.); (K.M.C.); (V.B.M.); (P.M.); (D.V.D.); (T.L.)
| | - Prithvi Mruthyunjaya
- Byers Eye Institute at Stanford, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (N.C.K.); (C.P.); (E.R.D.); (K.M.C.); (V.B.M.); (P.M.); (D.V.D.); (T.L.)
| | - Diana V. Do
- Byers Eye Institute at Stanford, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (N.C.K.); (C.P.); (E.R.D.); (K.M.C.); (V.B.M.); (P.M.); (D.V.D.); (T.L.)
| | - Theodore Leng
- Byers Eye Institute at Stanford, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (N.C.K.); (C.P.); (E.R.D.); (K.M.C.); (V.B.M.); (P.M.); (D.V.D.); (T.L.)
| | - David Myung
- Byers Eye Institute at Stanford, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (N.C.K.); (C.P.); (E.R.D.); (K.M.C.); (V.B.M.); (P.M.); (D.V.D.); (T.L.)
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Correspondence: ; Tel.: +1-650-724-3948
| |
Collapse
|