1
|
da Silva FMF, de Carvalho FM, Franco ALMM, Soares TRC, Fonseca-Gonçalves A, Vieira AR, Neves ADA, de Castro Costa M. Association between molar hypomineralization, genes involved in enamel development, and medication in early childhood: A preliminary study. Int J Paediatr Dent 2024; 34:211-218. [PMID: 37337785 DOI: 10.1111/ipd.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Molar hypomineralization (MH) is defined as a multifactorial condition, and thus, its presence may be defined by interactions between environmental and genetic factors. AIM To evaluate the association between MH, genes involved in enamel development, and the use of medication during pregnancy in early childhood. DESIGN One hundred and eighteen children, 54 with and 64 without MH, were studied. The data collected included demographics, socioeconomic data, and the medical history of mothers and children. Genomic DNA was collected from saliva. Genetic polymorphisms in ameloblastin (AMBN; rs4694075), enamelin (ENAM; rs3796704, rs7664896), and kallikrein (KLK4; rs2235091) were evaluated. These genes were analyzed by real-time polymerase chain reaction using TaqMan chemistry. The software PLINK was used to compare allele and genotype distributions of the groups and to assess the interaction between environmental variables and genotypes (p < .05). RESULTS The variant allele KLK4 rs2235091 was associated with MH in some children (odds ratio [OR]: 3.75; 95% confidence interval [CI] = 1.65-7.81; p = .001). Taking medications in the first 4 years of life was also associated with MH (OR: 2.94; 95% CI = 1.02-6.04; p = .041) and specifically in association with polymorphisms in ENAM, AMBN, and KLK4 (p < .05). The use of medications during pregnancy was not associated with MH (OR: 1.37; 95% CI = 0.593-3.18; p = .458). CONCLUSION The results of this study suggest that taking medication in the postnatal period appears to contribute to the etiology of MH in some evaluated children. There may be a possible genetic influence of polymorphisms in the KLK4 gene with this condition.
Collapse
Affiliation(s)
- Fernanda Mafei Felix da Silva
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Thais Rodrigues Campos Soares
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréa Fonseca-Gonçalves
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Rezende Vieira
- Department of Oral & Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aline de Almeida Neves
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo de Castro Costa
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Gil-Bona A, Karaaslan H, Depalle B, Sulyanto R, Bidlack FB. Proteomic Analyses Discern the Developmental Inclusion of Albumin in Pig Enamel: A New Model for Human Enamel Hypomineralization. Int J Mol Sci 2023; 24:15577. [PMID: 37958567 PMCID: PMC10650821 DOI: 10.3390/ijms242115577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Excess albumin in enamel is a characteristic of the prevalent developmental dental defect known as chalky teeth or molar hypomineralization (MH). This study uses proteomic analyses of pig teeth to discern between developmental origin and post-eruptive contamination and to assess the similarity to hypomineralized human enamel. Here, the objective is to address the urgent need for an animal model to uncover the etiology of MH and to improve treatment. Porcine enamel is chalky and soft at eruption; yet, it hardens quickly to form a hard surface and then resembles human teeth with demarcated enamel opacities. Proteomic analyses of enamel from erupted teeth, serum, and saliva from pigs aged 4 (n = 3) and 8 weeks (n = 2) and human (n = 4) molars with demarcated enamel opacities show alpha-fetoprotein (AFP). AFP expression is limited to pre- and perinatal development and its presence in enamel indicates pre- or perinatal inclusion. In contrast, albumin is expressed after birth, indicating postnatal inclusion into enamel. Peptides were extracted from enamel and analyzed by nano-liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) after tryptic digestion. The mean total protein number was 337 in the enamel of all teeth with 13 different unique tryptic peptides of porcine AFP in all enamel samples but none in saliva samples. Similarities in the composition, micro-hardness, and microstructure underscore the usefulness of the porcine model to uncover the MH etiology, cellular mechanisms of albumin inclusion, and treatment for demarcated opacities.
Collapse
Affiliation(s)
- Ana Gil-Bona
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Hakan Karaaslan
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Baptiste Depalle
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Rosalyn Sulyanto
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
- Department of Dentistry, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Felicitas B. Bidlack
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
3
|
Assessing Fluorosis Incidence in Areas with Low Fluoride Content in the Drinking Water, Fluorotic Enamel Architecture, and Composition Alterations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127153. [PMID: 35742396 PMCID: PMC9223038 DOI: 10.3390/ijerph19127153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023]
Abstract
There is currently no consensus among researchers on the optimal level of fluoride for human growth and health. As drinking water is not the sole source of fluoride for humans, and fluoride can be found in many food sources, this work aimed to determine the incidence and severity of dental fluorosis in Poland, in areas where a low fluoride content characterizes the drinking water, and to assess the impact of fluoride on the enamel composition and microstructure. The dental examination involved 696 patients (aged 15−25 years) who had since birth lived in areas where the fluoride concentration in drinking water did not exceed 0.25 mg/L. The severity of the condition was evaluated using the Dean’s Index. Both healthy teeth and teeth with varying degrees of fluorosis underwent laboratory tests designed to assess the total protein and fluoride content of the enamel. Protein amount was assessed spectrophotometrically while the level of fluoride ions was measured by DX-120 ion chromatography. The clinical study revealed 89 cases (12.8%) of dental fluorosis of varying severity. The enamel of teeth with mild and moderate fluorosis contained a significantly higher protein (p-value < 0.001 and 0.002, respectively) and fluoride level (p < 0.001) than those with no clinical signs of fluorosis. SEM images showed irregularities in the structure of the fluorotic enamel. An excessive fluoride level during amelogenesis leads to adverse changes in the chemical composition of tooth enamel and its structure. Moreover, dental fluorosis present in areas where drinking water is low in fluorides indicates a need to monitor the supply of fluoride from other possible sources, regardless of its content in the water.
Collapse
|
4
|
Cook C, Moreno Lopez R. Is molar incisor hypomineralisation (MIH) a new disease of the 21st century? PEDIATRIC DENTAL JOURNAL 2022. [DOI: 10.1016/j.pdj.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Sezer B, Tuğcu N, Calışkan C, Durmuş B, Kupets T, Bekiroğlu N, Kargül B, Bourgeois D. Effect of casein phosphopeptide amorphous calcium fluoride phosphate and calcium glycerophosphate on incisors with molar-incisor hypomineralization: A cross-over, randomized clinical trial. Biomed Mater Eng 2022; 33:325-335. [DOI: 10.3233/bme-211371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Within the scope of minimally invasive dentistry, the use of different biocompatible remineralization agents on incisors affected by molar-incisor hypomineralization (MIH) gains importance. OBJECTIVE: To evaluate the effect of casein phosphopeptide amorphous calcium fluoride phosphate (CPP-ACFP) and calcium glycerophosphate (CaGP) in mineral density (MD) of white/creamy and yellow/brown demarcated opacities on incisors affected by MIH by means laser fluorescence (LF). METHODS: As a cross-over, randomized trial, twenty-two children with 167 incisors affected by MIH were recruited and randomly assigned to one of the two different agents and crossed over to other agents with two weeks washout in between. Incisors were examined by using LF at all before and after three months periods. RESULTS: The results of the paired t-tests for determining the period effect between the baseline findings showed significant difference in white/creamy and yellow/brown demarcated opacities of LF values for both groups (p < 0.05). The difference between both groups according to after categorization of 20% increasing in MD in the percent of change before and after application on LF values; was not found statistically significant in white/creamy (p = 0.970) and yellow/brown (p = 0.948) opacities. CONCLUSIONS: The primary outcome was CPP-ACFP and CaGP had a positive effect in decreasing hypomineralization on MIH-affected enamel for three months period.
Collapse
|
6
|
Hubbard MJ, Mangum JE, Perez VA, Williams R. A Breakthrough in Understanding the Pathogenesis of Molar Hypomineralisation: The Mineralisation-Poisoning Model. Front Physiol 2022; 12:802833. [PMID: 34992550 PMCID: PMC8724775 DOI: 10.3389/fphys.2021.802833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Popularly known as "chalky teeth", molar hypomineralisation (MH) affects over 1-in-5 children worldwide, triggering massive amounts of suffering from toothache and rapid decay. MH stems from childhood illness and so offers a medical-prevention avenue for improving oral and paediatric health. With a cross-sector translational research and education network (The D3 Group; thed3group.org) now highlighting this global health opportunity, aetiological understanding is urgently needed to enable better awareness, management and eventual prevention of MH. Causation and pathogenesis of "chalky enamel spots" (i.e., demarcated opacities, the defining pathology of MH) remain unclear despite 100 years of investigation. However, recent biochemical studies provided a pathomechanistic breakthrough by explaining several hallmarks of chalky opacities for the first time. This article outlines these findings in context of previous understanding and provides a working model for future investigations. The proposed pathomechanism, termed "mineralisation poisoning", involves localised exposure of immature enamel to serum albumin. Albumin binds to enamel-mineral crystals and blocks their growth, leading to chalky opacities with distinct borders. Being centred on extracellular fluid rather than enamel-forming cells as held by dogma, this localising pathomechanism invokes a new type of connection with childhood illness. These advances open a novel direction for research into pathogenesis and causation of MH, and offer prospects for better clinical management. Future research will require wide-ranging inputs that ideally should be coordinated through a worldwide translational network. We hope this breakthrough will ultimately lead to medical prevention of MH, prompting global health benefits including major reductions in childhood tooth decay.
Collapse
Affiliation(s)
- Michael J Hubbard
- Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, VIC, Australia.,Melbourne Dental School, The University of Melbourne, Parkville, VIC, Australia
| | - Jonathan E Mangum
- Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, VIC, Australia
| | - Vidal A Perez
- Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, VIC, Australia.,Department of Pediatric Stomatology, Faculty of Health Sciences, University of Talca, Talca, Chile
| | - Rebecca Williams
- Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, VIC, Australia.,Melbourne Dental School, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|