1
|
Han H, Kang B, Sharker SM, Kashem TB, Kim Y, Lee J, Park M, Kim E, Jung Y, Lim J, Ryu S, Lee K. Synergistic effect of ROS-generating polydopamine on drug-induced bone tissue regeneration. NANOSCALE 2024; 16:20118-20130. [PMID: 39405040 DOI: 10.1039/d4nr02887b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
A PHD (prolyl hydroxylase) inhibitor, 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), is a drug that can artificially promote tissue regeneration by enhancing metabolic activity through the upregulation of hypoxia inducible factor 1 subunit alpha (Hif-1α) under normoxic conditions. This study presents a novel design methodology for a drug delivery system to maximize the regenerative effect of 1,4-DPCA. Specifically, by encapsulating 1,4-DPCA in polydopamine (PDA) that generates reactive oxygen species (ROS), the combined effects of Hif-1α upregulation and the induction of cellular antioxidant defense mechanisms by localized ROS can significantly enhance tissue regeneration. The study confirmed that each material (PDA and 1,4-DPCA) triggers a positive synergistic effect on the regenerative mechanisms. As a result, the use of a PDA drug delivery system loaded with 1,4-DPCA showed approximately six times greater bone regeneration compared to the control (no treatment) in a mouse calvarial defect model.
Collapse
Affiliation(s)
- Hyeju Han
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea.
- KNU Institute of Basic Sciences and KNU G-LAMP Project Group, Kyungpook National University, Daegu 41566, South Korea
| | - Bongkyun Kang
- KNU Institute of Basic Sciences and KNU G-LAMP Project Group, Kyungpook National University, Daegu 41566, South Korea
| | - Shazid Md Sharker
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Tabassum Binte Kashem
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Yuejin Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea.
- KNU Institute of Basic Sciences and KNU G-LAMP Project Group, Kyungpook National University, Daegu 41566, South Korea
| | - Jeehee Lee
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Minok Park
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eunjeong Kim
- KNU Institute of Basic Sciences and KNU G-LAMP Project Group, Kyungpook National University, Daegu 41566, South Korea
- BK21 FOUR KNU Creative BioResearch Group, Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - YunJae Jung
- Department of Microbiology, Gachon University College of Medicine, Incheon 21999, South Korea
| | - Jinkyu Lim
- Department of Energy and Environmental Engineering, The Catholic University of Korea, Bucheon 14662, South Korea
| | - Seungwon Ryu
- Department of Microbiology, Gachon University College of Medicine, Incheon 21999, South Korea
| | - Kyueui Lee
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea.
- KNU Institute of Basic Sciences and KNU G-LAMP Project Group, Kyungpook National University, Daegu 41566, South Korea
- Biomedical Research Institute, Kyungpook National University Hospital, Daegu 41940, South Korea
| |
Collapse
|
2
|
DeFrates KG, Tong E, Cheng J, Heber‐Katz E, Messersmith PB. A Pro-Regenerative Supramolecular Prodrug Protects Against and Repairs Colon Damage in Experimental Colitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304716. [PMID: 38247203 PMCID: PMC10987129 DOI: 10.1002/advs.202304716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/13/2023] [Indexed: 01/23/2024]
Abstract
Structural repair of the intestinal epithelium is strongly correlated with disease remission in inflammatory bowel disease (IBD); however, ulcer healing is not addressed by existing therapies. To address this need, this study reports the use of a small molecule prolyl hydroxylase (PHD) inhibitor (DPCA) to upregulate hypoxia-inducible factor one-alpha (HIF-1α) and induce mammalian regeneration. Sustained delivery of DPCA is achieved through subcutaneous injections of a supramolecular hydrogel, formed through the self-assembly of PEG-DPCA conjugates. Pre-treatment of mice with PEG-DPCA is shown to protect mice from epithelial erosion and symptoms of dextran sodium sulfate (DSS)-induced colitis. Surprisingly, a single subcutaneous dose of PEG-DPCA, administered after disease onset, leads to accelerated weight gain and complete restoration of healthy tissue architecture in colitic mice. Rapid DPCA-induced restoration of the intestinal barrier is likely orchestrated by increased expression of HIF-1α and associated targets leading to an epithelial-to-mesenchymal transition. Further investigation of DPCA as a potential adjunctive or stand-alone restorative treatment to combat active IBD is warranted.
Collapse
Affiliation(s)
- Kelsey G. DeFrates
- Department of BioengineeringUniversity of California, BerkeleyBerkeleyCA94720USA
| | - Elaine Tong
- Department of BioengineeringUniversity of California, BerkeleyBerkeleyCA94720USA
| | - Jing Cheng
- Department of BioengineeringUniversity of California, BerkeleyBerkeleyCA94720USA
| | | | - Phillip B. Messersmith
- Department of BioengineeringUniversity of California, BerkeleyBerkeleyCA94720USA
- Department of Materials Science and EngineeringUniversity of California, BerkeleyBerkeleyCA94720USA
- Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
3
|
Bedelbaeva K, Cameron B, Latella J, Aslanukov A, Gourevitch D, Davuluri R, Heber-Katz E. Epithelial-mesenchymal transition: an organizing principle of mammalian regeneration. Front Cell Dev Biol 2023; 11:1101480. [PMID: 37965571 PMCID: PMC10641390 DOI: 10.3389/fcell.2023.1101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 09/27/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction: The MRL mouse strain is one of the few examples of a mammal capable of healing appendage wounds by regeneration, a process that begins with the formation of a blastema, a structure containing de-differentiating mesenchymal cells. HIF-1α expression in the nascent MRL wound site blastema is one of the earliest identified events and is sufficient to initiate the complete regenerative program. However, HIF-1α regulates many cellular processes modulating the expression of hundreds of genes. A later signal event is the absence of a functional G1 checkpoint, leading to G2 cell cycle arrest with increased cellular DNA but little cell division observed in the blastema. This lack of mitosis in MRL blastema cells is also a hallmark of regeneration in classical invertebrate and vertebrate regenerators such as planaria, hydra, and newt. Results and discussion: Here, we explore the cellular events occurring between HIF-1α upregulation and its regulation of the genes involved in G2 arrest (EVI-5, γH3, Wnt5a, and ROR2), and identify epithelial-mesenchymal transition (EMT) (Twist and Slug) and chromatin remodeling (EZH-2 and H3K27me3) as key intermediary processes. The locus of these cellular events is highly regionalized within the blastema, occurring in the same cells as determined by double staining by immunohistochemistry and FACS analysis, and appears as EMT and chromatin remodeling, followed by G2 arrest determined by kinetic expression studies.
Collapse
Affiliation(s)
- Kamila Bedelbaeva
- Lankenau Institute for Medical Research (LIMR), Wynnewood, PA, United States
| | - Benjamin Cameron
- Lankenau Institute for Medical Research (LIMR), Wynnewood, PA, United States
| | - John Latella
- Lankenau Institute for Medical Research (LIMR), Wynnewood, PA, United States
| | - Azamat Aslanukov
- Lankenau Institute for Medical Research (LIMR), Wynnewood, PA, United States
| | | | | | - Ellen Heber-Katz
- Lankenau Institute for Medical Research (LIMR), Wynnewood, PA, United States
- The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|